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A B S T R A C T

In this paper, we present the design, analysis, and implementation of a novel data center network architecture
named CLOT, which delivers significant reduction in the network diameter, network latency, and infrastructure
cost. CLOT is built based on a switchless torus topology by adding only a number of most beneficial low-end
switches in a proper way. Forming the servers in close proximity of each other in torus topology well implements
the network locality. The extra layer of switches largely shortens the average routing path length of torus
network, which increases the communication efficiency. We show that CLOT can achieve lower latency, smaller
routing path length, higher bisection bandwidth and throughput, and better fault tolerance compared to both
conventional hierarchical data center networks as well as the recently proposed CamCube network. Coupled
with the coordinate based geographical addresses and credit based flow control, the specially designed POW
routing algorithm helps CLOT achieve its maximum theoretical performance. Besides, an automatic address
configuration mechanism and malfunction detection mechanism are provided to facilitate the network de-
ployment and configuration. The sufficient mathematical analysis and theoretical derivation prove both guar-
anteed and ideal performance of CLOT.

1. Introduction

Serving as the core infrastructure for the cloud providers as well as
large-scale enterprise applications, the data center network (DCN) plays
a key role in determining the performance of service provided to users.
The traditional hierarchical switched DCN topology, besides being very
costly, suffers high oversubscription ratio towards higher layers leading
to serious communication bottleneck [1]. Thus, researchers proposed
several more cost-effective DCN architectures such as BCube [2], DCell
[3], SprintNet [4,5], FlatNet [6], CamCube [7], Small-World [8] and
NovaCube [9], where these server-centric architectures abandon ex-
pensive high-end network switches by using only low-end switches or
even no switches at all. In addition, the forwarding functionality is
shifted to the servers, which helps achieve higher bisection bandwidth
and better fault tolerance with richer connections [10]. However, they
suffer high latencies due to their relatively long routing path length, e.g.
in torus-based architectures, and relatively poor path diversity. As a

result, some optical DCN topologies like OSA [11] have been proposed.
Compared with packet switching, the optical circuit switching can
provide higher bandwidth and lower latency in transmission. However,
the optics suffer from slow switching speed which can take as long as
tens of milliseconds, and cannot achieve full bisection bandwidth at
packet granularity.

Based on these observations, in this paper we propose a novel DCN
architecture named CLOT, which is built on a k-ary n-D torus topology
whose various unique advantages have been carefully exploited in
[9,12]. Based on torus CLOT well implements the network locality
forming the servers in close proximity to each other, which increases
the communication efficiency. Besides, in response to the serious issue
of long routing path length in torus topology, CLOT employs a number
of low-end switches connecting the most distant node-pairs in each
dimension, which largely shortens both network diameter and average
path length; this in turn reduces the network latency. Meanwhile, CLOT
also largely improves the bisection bandwidth, throughput and fault
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tolerance with better path diversity. Moreover, from the perspective of
cost-effectiveness, CLOT also far outperforms other hierarchical topol-
ogies like FatTree [13] with regard to the network cost. Furthermore,
the geographical address assignment mechanism enables content
routing such as key-value stores in addition to traditional routing, and
works well with legacy TCP/IP protocol. Besides, the proposed auto-
matic address configuration mechanism and malfunction detection
mechanism greatly facilitate the network configuration and avoids the
human errors.

The rest of the paper is organized as follows. First we briefly review
related works in Section 2. Section 3 gives the motivation of this re-
search. Then Section 4 presents the design and analysis of CLOT.
Afterwards, Section 5 discusses the network abstraction layers and the
network address translation mechanism. Then Section 6 describes the
automatic address configuration mechanism. Thereafter, the routing
scheme and flow control designs are shown in Section 7. Section 8
presents the system evaluation and simulation results. Finally, Section 9
concludes this paper.

2. Related work

As a low cost, efficient and robust network architecture, torus fabric
has received considerable research interest in recent years. Besides
being widely used in the High Performance Computing (HPC), the
torus-based interconnects have also recently been introduced to data
center clusters, and the typical examples include CamCube [7], Small-
World [8]. Fig. 1 gives an example of 1D&2D&3D Torus topologies.

CamCube [7] is a shipping container sized DCN based on a 3D torus
topology, and it is the first work that introduces the torus fabric into
data center interconnects. CamCube uses a traditional 3D torus topoloy
(as shown in Fig. 1) without any changes to it. CamCube is one pro-
totype that utilizes a low-level link oriented API to allow applications to
implement their own particular routing protocols to optimize the ap-
plication-level performance. These customized routing protocols run as
services in the servers, which is similar to overlay network. The critical
drawback is the long routing path length of torus based network, which
results in low routing efficiency and high latency.

In order to decrease the average routing path length, researchers
proposed a random data center topology named Small-World (SWDC)
[8] which is built upon a regular pattern, such as ring, torus or tube.
Small-World reduces the average routing path length by introducing a
number of random links. The degree of each server is limited to six,
where the number of random links of each node in SW-Ring, SW-
2DTrous, and SW-3DHexTorus are 4, 2, and 1, respectively. However,
the deterministic short-path based greedy routing algorithm results in
low worst-case throughput and poor load balancing, which may lead to
network congestion.

NovaCube [9] shares the similar goal of shortening routing path
length, and improving the bisection bandwidth and throughput. Fig. 2
presents an example of 3D NovaCube. Based on n-D torus, NovaCube is
constructed by adding a number of jump-over links in a beneficial way.
Different from CamCube which is a 3D-Torus, NovaCube can be any
dimensional Torus, with additional jump-over links. By doing this,
NovaCube greatly reduces the network diameter, increases the bisec-
tion bandwidth, improves the worst-case throughput, and provides a

better fault tolerance as well. Additionally, its probabilistic weighted
oblivious routing algorithm PORA helps NovaCube achieve good load
balancing with near-optimal routing path length.

Different from CamCube, CLOT extended Torus (CamCube) to-
pology by adding some most beneficial low-end switches (as shown in
Fig. 4). Compared with NovaCube, CLOT employs similar methodology
to improve the performance of Torus, where the differences are that
CLOT introduces a certain number of switches while NovaCube adds
some jump-over links between certain pair of server nodes. CLOT was
firstly proposed in [12]. Based on this work, we enrich this paper by
clearly stating the research motivation in Section 3, and in order to
facilitate the network construction and management we extended this
work by designing an automatic address configuration mechanism and
an error detection mechanism in Section 6. Besides, we conducted new
simulations in Section 8 to evaluate the CLOT from various aspects
including average path length, throughput, latency, and fault tolerance.

3. Motivation

3.1. Why Torus Cluster

Torus is a switchless network interconnection without any switches,
routers, or other network devices and associated cooling costs. The
Torus-based architecture well implements the network locality forming
the servers in close proximity of each other, which increases the com-
munication efficiency. The multi-dimensional torus interconnection is
attractive for a variety of reasons. Firstly, it results in lower infra-
structure cost and energy cost because it does not need switches
[14,15]. Even the wiring is simpler than other methods such as Fat-
Tree. Secondly, it enjoys better reliability and fault-tolerance. The tra-
ditional architecture is usually constructed with a large number of
switches. If in case one of the network devices fails, it will greatly
impacts on the network performance and system reliability. For ex-
ample, if a ToR switch fails, the whole rack of servers will lost the
connection with the servers in other racks. Thirdly, the architectural
symmetry of Torus topology optimizes the scalability and granularity of
Clusters. It allows systems to economically scale to tens of thousands of
servers, which is well beyond the capacity of fat tree switches. Fourthly,
it can provide high network performance, which has been proven in
high-performance systems and supercomputers, such as IBM’s Blue
Gene/L [16], Cray Gemini [17] and Blue Gene/Q (5D Torus) [18].

3.2. Issues of tours

Although torus topology holds many advantages, this design con-
sistently suffers from poor routing efficiency compared to other designs,
which was mainly due to the relatively long routing paths in torus
networks. For a k-ary n-D torus network, its network diameter is as highFig. 1. Examples of 1D&2D&3D Torus topologies.

Fig. 2. An examples of 3D NovaCube topology (not allwrap-links are shown).
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as ⌊ ⌋nk
2 hops. For example, in a 3D torus with radix 20, its maximum

distance between two nodes is 30 hops. The long path length in turn
results in relatively high latency. Besides, the traditional routing algo-
rithm also undergoes various critical issues. For example, DOR (di-
mension-ordered routing) routing algorithm [19] leads to poor load
balancing and low throughput, Valiant routing (VAL) routing algorithm
[20] destroys locality and receives longer routing path length, and the
adaptive routing algorithms like MIN AD [21] usually lead to non-op-
timal routing solutions, and are usually not deadlock free.

4. CLOT network structure

This section presents the design principle of CLOT architecture with
comprehensive performance analysis from various aspects. Prior to in-
troducing the physical interconnections, we first bring forward several
theorems with proof, which provides the theoretical basis of CLOT
design.

Theorem 3.1. For any node A(a1, a2, ... , an) in a k-ary n-D torus (when k
is even), assuming =F B b( ,A 1 b2, ... , bn) is the farthest node from A, then B is
unique and B’s unique farthest node is exactly A.

Proof. In a k-ary n-D torus, if B(b1, b2, ... , bn) is the farthest node from
A(a1, a2, ... , an), where ai∈ [0, k), bi∈ [0, k), then:

= ⎛
⎝

+ ⎞
⎠

∀ ∈b a k mod k for i n
2

, [1, ]i i
(1)

Since the result of +a mod k( )i
k
2 is unique, thus ∀bi∈ [0, k) is

unique. Hence, A’s farthest node B is unique. Next, assume FB=A′ ′a( ,1
′a ,2 ... , ′an), similarly we have:

′ = ⎛
⎝

+ ⎞
⎠

∀ ∈a b k mod k for i n
2

, [1, ]i i
(2)

By combining (1) and (2), we can get:

′ = ⎧
⎨⎩

⎡
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(2) For the case of + ∈ ⎡⎣ + )a k k, ,i
k k
2 2 we have

′ = ⎧
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⎡
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As a consequence of the above, ′ =a ai i for ∀i∈ [1, n]. Therefore,
A′ ′a( ,1 ′a ,2 ... , ′an) = A(a1, a2, ... , an), which means the farthest node
from B is exactly A. This ends the proof. □

Lemma 3.1.1. In an n-D Torus with radix k, for any node A( …a a a, , , n1 2 ),
its farthest node =FA (( + ⌊ ⌋a k

1 2 ) mod k, ( + ⌊ ⌋a k
2 2 ) mod k, ... , ( + ⌊ ⌋an

k
2 )

mod k).

Proof. For any node A( …a a a, , , n1 2 ) in k-ary n-cube, its farthest nodes
on the first dimension are (( + ⌊ ⌋a k

1 2 ) mod k, 0, ... , 0), ... , (0, ... ,

( + ⌊ ⌋ai
k
2 ) mod k, 0, ... , 0), ... , (0, ... , 0, ( + ⌊ ⌋an

k
2 ) mod k). By analogy,

A′s farthest nodes on subsequent higher dimensions can be done in the
same manner. For instance, its farthest nodes on the i-th dimension are
to set i number of coordinates to be ( + ⌊ ⌋aj

k
2 ) mod k, where j∈ [1, n],

and the rest are set to be 0. Consequently, there are ( )n
i number of

farthest nodes on the i-th dimension. Therefore, A′s farthest node in an
n-D Torus with radix k is =FA (( + ⌊ ⌋a k

1 2 ) mod k, ( + ⌊ ⌋a k
2 2 ) mod k, ... ,

( + ⌊ ⌋an
k
2 ) mod k). This ends the proof. □

Theorem 3.2. In a k-ary n-D Torus, for a certain node A, denoting its
farthest nodes on the i-th dimension as F{ },A

i
then the total number of A′s

farthest nodes in all dimensions is = ∑ = −N F{ } 2 1n
A
i n

1 .

Proof. Derived from Theorem 3.2, we can get  =( )F{ }A
i n

i . Thus, the

total number of farthest nodes of node A in all dimensions can easily be
computed as = ∑ = ∑ = −( )N F{ } 2 1,n

A
i n n

i
n

1 1 which ends the
proof. □

4.1. Physical structure

4.1.1. Key principle
As aforementioned, Torus suffers a lot from its long network dia-

meter, which results in communication inefficiency and extra latency.
The key principle of CLOT construction is to reduce the routing path
length and improve its overall network performance while retaining the
Torus’s merits. Based on regular torus topology, CLOT is established by
adding a number of most beneficial small low-end switches. More
specifically, in CLOT each node and its −2 1n farthest nodes in different
dimensions are connected via a low-end switch. In order to better il-
lustrate the specific architecture of CLOT, some representative cases are
provided as below.

4.1.2. Cases

• Case #1: Take 2-D CLOT for example, for any node A, as indicated
in Theorem 3.3, the number of its farthest nodes is three ( −2 12 ) in
total. Thus, each switch needs to connect any node and its three
farthest nodes in total, where a 4-port low end switch is needed. The
four nodes under the same switch are: (ai, aj), (( + ⌊ ⌋ai

k
2 ) mod k, aj),

(ai, ( + ⌊ ⌋aj
k
2 ) mod k), and (( + ⌊ ⌋ai

k
2 ) mod k, ( + ⌊ ⌋aj

k
2 ) mod k), re-

spectively, where i, j∈ [1, k], and ∈ −a a k, [0, 1]i j . Fig. 3 (left) il-
lustrates the architecture of a 2D CLOT.

• Case #2: Likewise, for the case of 3D CLOT, eight-port switches are
needed. The eight nodes under the same switch are: (ai, aj, az),
(( + ⌊ ⌋ai

k
2 ) mod k, aj, az), (ai, ( + ⌊ ⌋aj

k
2 ) mod k, az), (ai, aj, ( + ⌊ ⌋az

k
2 )

mod k), (( + ⌊ ⌋ai
k
2 ) mod k, ( + ⌊ ⌋aj

k
2 ) mod k, az), (( + ⌊ ⌋ai

k
2 ) mod k, aj,

( + ⌊ ⌋az
k
2 ) mod k), (ai, ( + ⌊ ⌋aj

k
2 ) mod k, ( + ⌊ ⌋az

k
2 ) mod k), and

(( + ⌊ ⌋ai
k
2 ) mod k, ( + ⌊ ⌋aj

k
2 ) mod k, ( + ⌊ ⌋az

k
2 ) mod k), respectively,

where i, j, z∈ [1, k], and ∈ −a a a k, , [0, 1]i j z . Fig. 3 (right) gives an

Fig. 3. Examples of 2D&3D CLOT topology (without wrap around links).
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example of a 4*4*4 3D CLOT. For simplicity, the wrap around links
are not displayed and only one switch is demonstrated.

• Generally, for a n-D CLOT, each switch connects to 2n nodes:
(( + ⌊ ⌋a i* k

1 2 ) mod k, ( + ⌊ ⌋a j* k
2 2 ) mod k, ... , ( + ⌊ ⌋a r*n

k
2 ) mod k),

where i, j, r∈ {0, 1}.

4.2. Key properties and performance analysis

4.2.1. Network diameter
The length of routing path in a network greatly impacts the com-

munication efficiency and transmission latency, while the network
diameter largely determines the routing path length. Thus, a lower
network diameter should be offered as a basic feature of network de-
sign. From this aspect, CLOT is highlighted by its low network diameter.

Theorem 3.3. For a n-D CLOT with radix k, its network diameter is

=
⎢
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4.2.2. Bisection bandwidth
If the network is segmented into two equally sized groups such that

the bandwidth between these two groups is minimum, then bisection
bandwidth is calculated as the sum of link capacities between the two
halves. In a word, the bisection bandwidth represents the bandwidth
across the ”narrowest” part of the network. It can be used to evaluate
the worst-case network capacity [22].

Theorem 3.4. The bisection bandwidth of n-D CLOT with radix k is:
= + −B k k4C

n n 1.

Proof. Assume CLOT network N(N1, N2) is partitioned into two equal
disjoint halves N1 and N2, and the set of links connecting two parts N1,
N2 is denoted as L(N1, N2). Each element of L(N1, N2) is a bidirectional
link with one node in N1 and the other node in N2. Thus, there are |L
(N1, N2)| bidirectional links or 2|L(N1, N2)| unidirectional channels at
the bisection position. If the bandwidth of each unidirectional channel
is set to be 1, then the bisection bandwidth of CLOT will be

=B L N N2 ( , )C 1 2 . For a k-ary n-D CLOT as depicted in Fig. 4, when k
is even, there is even number of k k-ary −n( 1)-D CLOT, which can be
divided by the minimum bisection into two equal groups with −k2 n 1

regular links and k
2

n
switch-server links. Therefore, there is

= +−L N N k( , ) 2 n k
1 2

1
2

n
. As a result, = = + −B L N N k k2 ( , ) 4 ,C

n n
1 2

1

which ends the proof. □

Compared with the traditional regular Torus network whose bisec-
tion bandwidth is = −B k4 ,T

n 1 CLOT effectively improves the bisection
bandwidth by at least = = ≥− + −− −

− 25%,B B
B

k k k
k

k4 4
4 4

C T
T

n n n
n

1 1
1 and the ratio

increases accordingly as k increases. For instance, k=10 implies a
250% increment to the bisection bandwidth.

4.2.3. Throughput
The network throughput4 is an important reference indicator to

evaluate the network capacity of a topology. Throughput not only is
limited by bisection bandwidth, but also largely depends on the traffic
pattern, routing algorithm and flow control mechanism. However, we
can evaluate the ideal throughput of a topology under the optimal
routing and flow control. The maximum throughput occurs as some
channel5 in the network is saturated and the network cannot carry more
traffic. Assume the workload on a channel c is γc, and the channel
bandwidth is bc, then the maximum channel workload of the network is

= ∈γ max γ c C{ , }cmax . The ideal throughput Θideal then can be obtained
as:

= b
γ

Θideal
c

max (7)

Considering the uniform traffic pattern, the maximum channel load
at the bisection channel has a lower bound which results in an upper
bound on throughput. Because the CLOT is both node- and edge-sym-
metric, thus on average half of the kn packets must cross through the BC

bisection channels. With assumption of the existence of optimal routing
and flow control, the k

2

n
packets will be evenly distributed among all

bisection channels which results in ideal throughput, and the lower
bound of bisection channel load can be calculated as:

≥ =
+

=
+−γ

B k k
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k4 2 8max

k

C

k

n n
2 2

1

n n

(8)

Likewise, the upper bound of bisection channel load is

≤ =
+

=
+−γ k

B
k

k k
k

k4 4max

n

C

n

n n 1 (9)

Combining Eqs. 7, 8 and 9, we can derive that

+ ≤ = ≤ +k
k

b b
γ

k
k

b4 Θ 2 8
c ideal

c

max
c

(10)

Compared with the regular torus network whose ideal throughput is
only [ ,b

k
b
k

4 8c c ] [23], CLOT exhibits a considerable improvement to the
network capacity regarding to the maximum throughput. From another
perspective, if the throughput under a certain routing algorithm is
normalized to the network capacity  =Θ ,n

γ
γ R( )n

max where R denotes a
routing algorithm, then in torus its maximum normalized throughput
Θn can reach as high as 50% under a throughput optimal routing al-
gorithm like Valiant routing (VAL) [20]. Consequently, in CLOT the

Fig. 4. An example of n-D CLOT with radix k.

4 The throughput means the accepted traffic, and it is the rate that traffic (bits/
s) is delivered to the destination nodes.
5 The channel means one path consisting of a series of links between a pair of

nodes.
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maximum normalized worst-case throughput can be achieved by at
least 62.5%, which which is further evidence of CLOT’s better perfor-
mance.

4.2.4. Path diversity
CLOT is vastly superior to other DCN architectures in path diversity.

The number of distinct paths existing in CLOT is too huge to be cal-
culated exactly, for simplicity, we first consider only the equal-cost
shortest paths with the same direction in a regular torus without con-
sidering the switch-server links. Assume two nodes …A a a a( , , , )n1 2 and

…B b b b( , , , )n1 2 where A and B are separated by = −a bΔi i i hops in the
i-th dimension, then the total number of minimal paths NAB between A
and B is given by:
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i
computes the number of ways to choose where

to take the Δi hops out of the remaining ∑ = Δj i
n

j hops. For example,
given =n 3, =Δ 4,x =Δ 5,y =Δ 6,z the total number of minimal
paths NAB is as high as 630630, and it increases rapidly with dimension.
Besides, if taking the switch-server links into consideration the number
of possible paths will be much larger, and the number of non-minimal
possible is nearly unlimited. The good path diversity of CLOT offers
many benefits to the network. On the one hand, the traffic can be se-
lectively distributed over these equal-cost paths which can help achieve
good load balancing. On the other hand, this path diversity also pro-
vides good fault tolerance where the traffic can route around the faulty
channels by taking alternative equal-cost paths.

4.2.5. Cost-effectiveness
Apart from its strong advantages in network performance, CLOT is

also very cost-effective.
It can be easily derived that in a k-ary n-D CLOT, the total number of

switches is = ( )Nswitch
k n

2 with 2n ports on each switch.
As known, the per-port-price of a switch increases with its number

of ports. Based on careful investigations and statistics on the Amazon
[24] online quoted prices, Table 1 gives the average per-port-price for
10GE switches with different numbers of ports. Table 2 exhibits the
comparison of switch cost between different sized 3D CLOTs and Fat-
Tree networks. It can be seen that a 3D CLOT uses only low-end 8-port
cheap switches, while Fat-Tree requires high-end expensive switches
with more ports. Although CLOT uses more switches than FatTree when
the network size is larger than 16,000 servers, CLOT still yields a much
lower switch cost. For example, FatTree requires an expenditure of
650,049,875$ on switches to scale up to 200,000 servers while CLOT
only needs 375,000$ for the same network size which is around 173
times cheaper, which demonstrates the cost-effectiveness of CLOT.

5. Network layering and address translation

5.1. Network layering

Similar to the Internet protocol suite, CLOT network also uses en-
capsulation to provide abstraction of protocols and services. As illu-
strated in Fig. 5, the layered protocol stack in CLOT network is also

divided into five layers (application, transport, network, link and
physical), which enables an application to use a set of protocols to send
its data down the layers, being further encapsulated at each level.

The major difference lies in the network layer, where the traditional
Internet uses an IP address to locate different hosts while CLOT uses
coordinates to direct the data transmission with the benefit of the
perfect symmetry of topology, which facilitates the routing greatly.
Coupled with the geographical identities, the geographical routing and
addressing APIs make it possible for CLOT to implement applications
like key-value stores, map-reduce operation and coordination protocols
more efficiently. In order to keep the running applications unmodified,
CLOT makes no changes to the transport protocols which enables the
applications to directly adopt the functionality of TCP or UDP. Since the
IP address must be provided when creating sockets for TCP and UDP,
however, the CLOT only has coordinates, so the network needs an
adaptation layer to translate coordinates to the IP address format.

5.2. Network address translation

In order to make the CLOT network compatible with the legacy
TCP/IP protocol, we designed an address translation mechanism to
implement the convention between IPv4 address and CLOT coordinates.

As illustrated in Fig. 6, a 32-bit IPv4 address is divided into seven
segments including six pieces with five bits and one piece with two bits.
The coordinate of each dimension is denoted by the five-bit slice, and
the remaining two bits are a dimension flag which is used to indicate
the number of dimensions. In this way, a 32-bit IPv4 address can sup-
port up to six dimensions, where a 6-D CLOT can hold up to 230=
1,073,741,824 (1 billion) servers, thus this kind of division is reason-
able and adequate even for a large scale data center. However, the two-
bit dimension flag can not represent six dimensions. Here we define that
only the dimension flag with “11” indicates a 6D network address.
When the number of dimensions is less than six, the address space of
last dimension will not be used. Therefore, when the dimension flag is
”10”, we make use of the first three bits of the last dimension’s address
space to represent the specific dimension. The rule of dimension

Table 1
The per-port cost on different types of switches.

Number of ports Price per port (US $)

16 150
16–32 450
>32 650

Table 2
The cost comparison between Fat-Tree and 3-D CLOT.

Network size Switch number (p-port switch) Switch cost (US $)

Fat-Tree CLOT Fat-Tree CLOT

500 199 (p=13) 63 (p=8) 376,086 9,450
1,000 315 (p=16) 125 (p=8) 750,047 18,750
5,000 922 (p=27) 625 (p=8) 11,262,119 93,750
10,000 1463 (p=34) 1250 (p=8) 32,522,033 187,500
16,000 2000 (p=40) 2000 (p=8) 52,000,000 300,000
20,000 2321 (p=43) 2500 (p=8) 65,005,758 375,000
100,000 6787 (p=74) 12,500 (p=8) 325,045,783 1,875,000
200,000 10,773 (p=93) 25,000 (p=8) 650,049,875 3,750,000

Fig. 5. The CLOT network abstraction layers.
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correspondence is illustrated in Table 3, and other values are currently
considered illegal.

6. Automatic address configuration mechanism design

6.1. Motivation

A multiple dimensional torus network can easily scale to support a
large number of servers. It will turn to be very complex to manually
configure the network address for each node, and it possibly incurs
human errors which are difficult to be correctly detected. Besides, node
failures, network interface card error, and wrong link connections also
greatly affect the network operation. Therefore, the system requires an
automatic network address configuration mechanism and an efficient
error detection mechanism to facilitate the network construction and
management.

6.2. Automatic address configuration mechanism

In this subsection, the Automatic Address Configuration Mechanism
(AACM) is designed. Originally, as all nodes have no addresses before
executing AACM, thus the AACM needs to work on the link layer other
than network layer to distribute the configured addresses. As afore-
mentioned, in CLOT, the node addresses are denoted by coordinates,
and the coordinates are linearly increased on each dimension.

6.2.1. Address configuration frame format
In CLOT network, the link layer uses point-to-point connection, and

each port of one node only can directly send packets to its directly-
connected port of its next neighbor node, without need of MAC ad-
dresses. Therefore, the data frame only needs to carry the protocol type
of upper layer and no need to contain MAC addresses, as illustrated in
Fig. 7. For example, the Protocol field with the value of 0x0800 denotes
that the upper layer is IPv4, and 0x86dd denotes IPv6. When a node
receives a frame, it analyzes the Protocol field of this frame and push it
to the corresponding protocol instance for further processing. Here, we
set the Protocol field as 0xA800 to denote the automatic address con-
figuration protocol.

The format of frame used in the address configuration protocol is

illustrated in Fig. 8. Once a node identifies the Protocol field of its re-
ceived frame is 0xA800, then this frame will be handled by address
configuration protocol. The Flag field contains 8 bits. The Config bit
with value ”1” indicates this frame is used to configure the node co-
ordinate using the value contained in Address field. The Alt bit is used
together with Config bit. The Alt bit will be inversed between two
consistent configuration, so that the node can identify it as a new
configuration other than an address configuration error. The ACK bit
denotes an confirmation frame, where each node should send back an
ACK frame to confirm its correct configuration status. Setting the Addr
Err bit indicates that there are address configuration errors in the net-
work. The Dead link bit with value ”1” means some node is not reach-
able due to node/link failure. It is usually used together with Report bit.
The Success bit indicates a successful address configuration. The Report
bit with value ”1” denotes the frame should be routed back to the origin
node. Finally, setting the Combine bit can reset the other bits and be
used in combination with other bits to implement more functions. This
is used for future protocol extension.

The 32-bit Address field contains the address to be configured. As
denoted in Table 3 and Fig. 6, the Address also contains the dimension
information, thus each node can learn the dimension of the network.
The next field Node number list indicates the number of nodes on each
dimension in the network, so that each node can compute if it is located
at the edge of network, where the node is connected with its neighbor
node by a wraparound link. The variable content of Data field depends
on the settings of Flags field. For example, in an error report frame with
Addr Err =1 and Report = 1, the Data field will contain the address/
location information of error node or link.

6.2.2. Auto address configuration algorithm
Algorithm 1 details the working procedure of the automatic address

configuration algorithm. To better explain the principle of the auto-
matic address configuration and error detection mechanism, Fig. 9
depicts an AACM example in a 2D CLOT network. In torus topology
each node is equal and thus AACM algorithm can be executed starting
from any node. Assume the starting origin node is the upper left corner
node, with the coordinate (0, 0). The node identifies itself as an origin
node (0, 0), then it sends configuration messages to its neighbor nodes
along +x, -y, -x, +y directions (drawn as red lines in Fig. 9): (0, 1), (1,
0), (0, 3), and (3, 0), respectively. If there are no errors, all nodes that
receive configuration messages should reply an ACK message to confirm
the configurations, and meanwhile send configuration messages to their
next hop nodes. For example, when node (0, 1) receives the config-
uration message and checks the y coordinate is 0, then it will not wait
the confirmation messages from y directions and directly send config-
uration messages to its neighbor nodes along +x, +y, -y with config-
ured addresses (0, 2), (1, 1) and (3, 1), respectively, and wait for
confirmation ACKs. Likewise, node (1, 0) takes similar actions. These
actions are drawn in green lines as shown in Fig. 9. When node (1, 1)
receives an address configuration request from one direction (saying
-y), and it checks all coordinates are non-zero values and not maximum
values (i.e. edge node), thus it must wait the configuration request from
another direction (i.e. -x). When it receives the configuration message
from -x direction, this node compares two received addresses from di-
rections -y and -x. If they are both (1, 1), then it considers the config-
ured addresses of previous nodes are all correct, and then sends address
configuration requests (1, 2) and (2, 1) to its next hop nodes along +x
and -y directions, respectively, as shown in Fig. 9 (drawn in blue lines).

Fig. 6. The correspondence between IPv4 and CLOT coordinates.

Table 3
The representation of different specific dimensions.

Dimension flag (binary) First 3 Bits of c
(binary)

Dimension number (decimal)

11 xxx 6
10 101 5
10 100 4
10 011 3
10 010 2
10 001 1

Fig. 7. Frame format.
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Fig. 8. AACM frame format.

1: function Address_Configuration
2: while Node receives address configuration request do
3: n← gets the number of dimensions
4: (x0, x1, . . ., xn−1)← gets coordinates
5: (k0, k1, . . ., kn−1)← gets the number of nodes on each dimension
6: Reply ACK message
7: if xi==0 for ∀i ∈ [0, n − 1] then
8: Set current address as origin
9: Send corresponding configuration requests from all ports, and wait ACK msg.

10: elseif∃ixi != 0
11: if ∀i ∈ [0, n − 1], xi < n − 1 then
12: if All the non-zero coordinate’s negative direction has received config requests then
13: if All requested addr are the same then
14: Configure with the requested addr
15: Send config. requests to all non-zero coordinates’ positive directions, and wait for ACK msg.
16: Send config. requests to zero coordinates’ both positive and negative directions, and wait for ACK msg.
17: elseSend erro msg from the port which firstly receives the config. request.
18: end if
19: end if
20: else
21: if Non-zero coordinates’ negative direction and max coordinates’ positive direction have received config. re-

quests then
22: if All requested addrs are the same then
23: Configure with the requested addr
24: Send config. requests to all non-zero coordinates’ positive directions, and wait for ACK msg.
25: Send config. requests to zero coordinates’ both positive and negative directions, and wait for ACK msg.
26: elseSend erro msg from the port which firstly receives the config. request.
27: end if
28: if x0 = k0 && … && xn−1 = kn−1 then
29: if all ports have received configuration requests with the same addr then
30: Send configuration success msg to the port firstly receiving the config. request
31: end if
32: end if
33: end if
34: end if
35: end if
36: end while
37:

38: while the node waiting config. request times out do
39: Send node unreachable erro msg from the port which firstly receives the config. request.
40: end while
41: end function

Algorithm 1. Automatic address configuration.
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As the address configuration carries on, if there are no errors, then the
last node (bottom right corner node) of the network will receives the
same address configuration request from all directions. Then, the node
identifies itself as the last node (all coordinates have maximum values)
of the whole network, and sends successful configuration report to the
origin node (0, 0). Notably, the whole configuration procedure is exe-
cuted in parallel.

The above is an error-free case with successful configurations.
However, sometimes network errors may occur in practice, such as
unreachable nodes, wrong connections caused by human errors. The
AACM will automatically detect these errors and explicitly report the
error reasons and error locations to the origin node. As demonstrated in
Fig. 10, suppose node (1, 1) sends an address configuration request to
node (1, 2), however, due to some errors (e.g. link disconnection, port
error, node error, etc.) occurred in node (1, 2), node (1, 1) could not
receive confirmed ACK message from node (1, 2). After waiting a cer-
tain time, when the node (1, 1)’s predetermined timer timeout, an error
report containing the coordinates of node (1, 1) and node (1, 2) will be
generated and sent back to the origin node via DOR routing. It is no-
table that the node (1, 1) being able to send address configuration re-
quest to node (1, 2) means that the previous nodes of node (1, 1) in each
dimension have been configured successfully, therefore, the error re-
port can be guaranteed to be routed back to the origin node to inform
the administrator about the errors.

Another error case is the wrong link connection caused by human
errors, as shown in Fig. 11. In this case, only using ACK confirmation
messages cannot detect such errors. Nevertheless, AACM can efficiently
detect this error by checking the consistency of received address con-
figuration requests from all directions. After error being detected, the
error node will not send address configuration requests to its next hop
nodes so as to prevent subsequent nodes generating numerous error
reports. As shown in Fig. 11, because of wrong connections caused
human errors, node (2, 1) will receive two different address config-
uration requests from two dimensions, one correct request with address
(2, 1) sent from node (2, 0) and one wrong request with address (2, 2)
sent from node (1, 2). The inconsistency of two requests invokes node
(2, 1) to send error report to the port which firstly receives the con-
figuration request. Then the error report, containing the node’s

coordinate information, the port number that receives the error report
and all inconsistent coordinates of error nodes, will be forwarded to the
origin node along the DOR routing path.

7. Routing scheme and flow control

This section presents a Probabilistic Oblivious Weighted routing
algorithm named POW and flow control mechanism for CLOT, which
aim to achieve good load balancing with minimum routing path and
high throughput.

Fig. 9. An example of AACM.
Fig. 10. AACM in case of link/node error.

Fig. 11. AACM in case of human error.
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7.1. POW routing algorithm

Different from the deterministic routing algorithms (e.g. DOR [19])
whose routing is directly determined by the source and destination
address eliminating path diversities provided by torus topology in-
curring poor load balancing or even congestion, POW makes a prob-
abilistic decision at each routing step according to a distance-based
probability function. Here we use the notation ΔSD to denote the DOR
[19] distance (without switches) between node S and D.

Without loss of generality, for simplicity we use 2D CLOT to illus-
trate the working procedures of POW algorithm. As shown in Fig. 12,
assume a source node S needs to send data to a destination node D, then
S has five directions in its first step to route the data which are S1, S2,
S3, S4 and S5, where S5 is a switch node. In order to select the most
beneficial next-hop node, each direction is assigned a probability based
on the distances between each next-hop node and destination node.
Then POW decides the next-hop node according to their probabilities.
In order to guarantee the packet delivery, the distance ΔS Di between the
chosen node Si and destination D must be smaller than ΔSD, i.e.

<Δ ΔS D SDi . The normalized probability function is computed as below:
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where ψ is the number of satisfied neighbours of the source node. For
example, in Fig. 12 we have =Δ 7,SD and the distances between S′s
neighbour nodes and destination D are =Δ 6,S D1 =Δ 6,S D2 =Δ 8,S D3

=Δ 6,S D4 =Δ 2,S D5 respectively, where S3 fails to meet the require-
ment of ΔS Di < ΔSD. Thus, the probability of choosing S1 as the next-hop
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(i=1,2,4,5), and likewise =p 8.33%,S2

=p 8.33%,S4 and =p 75.00%,S5 respectively. Clearly, POW prefers to
choose the shorter route with a higher probability. Here we have two
individual cases to deal with: If the switch S5 is chosen finally, then it
will determinedly choose one of its neighbour nodes that is closest to
the destination as the next-hop. Otherwise, if a normal node Si, i=1,2,4,
is selected as S′s next-hop, then the above procedure is repeated taking
Si as the new source node until the packet reaches the destination.

7.2. Flow control

The flow control mechanism is designed to manage the allocation of

resources (e.g. queue buffer) to packets as they progress along their
route so as to avoid congestion or deadlock. In the traditional Internet,
protocols with flow control like TCP usually avoid congestion through
dropping packets and retransmission. However, this mechanism is not
suitable in the torus network due to its long routing path, e.g., if the hot
spot is very far from the source then dropping packet means the pre-
vious long transmission would have been of waste and the re-
transmission packets would occupy additional bandwidth which may
make the network more congested. Thus, the most beneficial way is to
achieve a packet lossless fabric, where the buffers of nodes in the net-
work should be guaranteed no overflow. The common approach is to
use credit-based flow control. As shown in Fig. 13, the prerequisite for
any uplink node sending data to a downlink node is that its output port
has enough credits. The default value of credit is the number of packets
that the downlink node can accept. The credits will be deducted by one
whenever one packet is sent out. Correspondingly, whenever the
downlink node vacates new buffer space to accept a new packet, it will
send one credit to its uplink node and increase the credit of its corre-
sponding port by one. Usually, there may exist a nearly negligible delay
between packet transmission and credit feedback between two directly
connected nodes, however, for safety the downlink node should have
slightly larger buffer for several more packets to deal with any possible
underflow issues. The credit can either be transferred via in-band or
out-of-band signal, where the in-band way is more cost-effective but
complicated to be implemented while out-of-band method is simple to
be realized but with more cost. Besides, the Head-of-Line blocking issue
can be addressed in the way of shared buffering where the output queue
and input queue are logically organized as a shared virtual queue in the
implementation.

7.3. Deadlock avoidance implementation

Deadlock occurs when a cycle of packets are waiting for one another
to release resources (queue buffer) where the resource dependencies
form a cycle. Packets are blocked indefinitely and throughput will also
collapse at once. There are usually two deadlock avoiding techniques,
including virtual channels (by decomposing each unidirectional phy-
sical channel into several logical channels with private buffer re-
sources) and Turn Model Routing (by eliminating certain turns in some
dimensions). To make our architecture deadlock free, we first ensure
that the route cannot form a loop in POW routing. As aforementioned,
each step of POW routing is guaranteed to be closer to the destination
without jumping back, which ensures POW is deadlock free in the mesh
sub-network. Finally, if packets go through the wraparound links in
torus network, then as was done in [19] we use two virtual channels to
cut the loop into two different logical channels, which is easy to be
implemented and effectively avoids deadlock.

7.4. Livelock prevention

Livelock is another notorious issue where packets continue to pro-
ceed through the network but do not advance towards their destination
even though they are not blocked. This may occur when non-minimal
adaptive routing is allowed where packets may be misrouted but are

Fig. 12. POW routing in an 8*8 2-D CLOT (for simplicity not all switches and
wrap-around links are shown).

Fig. 13. Credit-based flow control implementation.
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not able to get closer to their destination. In POW routing, it guarantees
the packet delivery to destination in a greedy way, where the decision
made at each step is based on the distance which requires ΔS Di < ΔSD.
Thus, POW routing enables packets to choose its next hop which is
always closer to the destination than that from the current node, and
with a high probability of choosing the shortest path. Therefore, we can
claim that POW is a livelock-free routing algorithm.

8. Evaluation

This section presents the evaluation results of CLOT and POW
routing algorithm from various aspects by using network simulator 3
(NS-3) [25].

8.1. Simulation settings

In this section, all the simulations are conducted by applying the All-
to-All traffic pattern. The packet inter-arrival time reveals an ON/OFF
pattern. Its distribution follows the Lognormal mode for OFF phase, and
for ON phase the Exponential Flow Mode is applied to determine the
distribution of packet inter-arrival times. All the links are capable of
bidirectional communications, and the link bandwidth is set to be 1
GBps. The default MTU of a link is 1500 bytes, the default packet size is
one MTU, and the default buffer size of each switch is 10 MTU. The
default processing time for a packet at a node is 10 μs while the default
propagation delay of a link is 5 μs, and the TTL of a packet is set to be
128. In faulty conditions, the failure rate will be set fixed and the fault
links will be chosen at random.

8.2. Average path length

The average path length (APL) and network diameter largely de-
termine the network latency. A smaller network diameter with lower
average path length should be offered as a desired feature of the net-
work design enabling the data center to provide faster services. Fig. 14
illustrates the simulation results of average path length and network
diameter achieved by CLOT and its competitors NovaCube and Cam-
Cube, applying all-to-all traffic pattern. It can be seen that CLOT re-
duces the network diameter by 35%∼ 50% comparing with CamCube
for different network sizes. Moreover, CLOT achieves smallest average
path length, which is 10%∼ 20% smaller than NovaCube and
40%∼ 50% smaller than CamCube. The smaller average path length
will help CLOT achieve a lower network latency, which is further
convinced by the simulation results in Section 8.4.

8.3. Throughput

The throughput is evaluated to measure the overall network capa-
city of the architecture. The throughput is usually limited by bisection
bandwidth and also impacted by the routing algorithm. In the simula-
tions, NovaCube applies PORA routing algorithm, CamCube uses DOR
(dimension-ordered routing) routing algorithm, and CLOT adopts
shortest path (SP) routing and its POW routing algorithm. Fig. 15 and
Fig. 16 exhibit the evaluation results of throughput with different net-
work configurations, where the evaluated network sizes are 216 servers
and 512 servers, respectively. The results reveal that for 216-sized
network CLOT improves the throughput by 84.22% at most and 76.13%
on average comparing with regular torus based CamCube. The
throughput improvement for 512-sized network is higher, where the
increasement is 94.38% at most and 82.73% on average comparing
with CamCube. This proves the previous theoretical analysis of CLOT’s
bisection bandwidth and throughput. Besides, CLOT and NovaCube
achieve a similar performance on throughput, where CLOT is slightly
better than NovaCube with a 3%∼ 4% improvement on average.

8.4. Latency

The network latency in the simulations is measured using the
average RTT/2 (round-trip-time) of ICMP packets between two desig-
nated hosts by repeating 10 times. The latency t is calculated as below:

Fig. 14. The performance of average path length.

Fig. 15. The performance of throughput for 216-server network.

Fig. 16. The performance of throughput for 512-server network.
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where =N 10 indicates the repeating times, and RTTi denotes the round
trip time of i-th ICMP packet.

Fig. 17 shows the simulation results of network latency of CamCube,
NovaCube and CLOT with different network configurations varying
from k=4 (64 servers) to k=16 (4096 servers). The results show that
CLOT achieves lowest latency, which is 42.2%∼ 50.1% lower than
CamCube and 7.3%∼ 19.7% lower than NovaCube. It also reveals that
CLOT will gain more latency reduction as the network size increases
(with higher k).

8.5. APL under faulty conditions

As aforementioned in Section 4.2.4, torus-based CLOT architecture
achieves very good fault tolerance benefiting from its excellent path
diversity and rarely confronts network disconnections. Fig. 18 illus-
trates the results of the achieved average path length (APL) under faulty
conditions with different link/node failure ratios. Noting that the sta-
tistic result excludes the cases of connection failures between two given
servers (whose APL is infinite), only calculating the average path length
of reachable server pairs. From the results shown in Fig. 18 it can be
seen that apparently the average path length increases as link/node
failure ratio increases for both CLOT and CamCube. Nevertheless, CLOT

achieves a better performance than CamCube under faulty conditions,
where the average path length of CLOT is 42%∼ 50% lower on overage
than that of CamCube. Another interesting finding is that the node
failure has a slightly higher impact on the average path length.

9. Conclusion

This paper presents a novel torus based DCN architecture CLOT
using a certain number of low-end switches to connect the most distant
nodes in each dimension. Comparing with the regular k-ary n-D torus
network CLOT halves the network diameter, improves bisection band-
width by at least 25% where the ratio increases with k, increases the
ideal throughput to be at least 65%, and provides a much better path
diversity resulting in a better fault tolerance. Additionally, coupled with
the geographical coordinate address, CLOT can carry out the content
routing which provides the possibility of implementing key-value stores
in addition to the traditional routings. CLOT is also compatible with
legacy TCP/IP protocols. The automatic address configuration me-
chanism and error detection mechanism significantly facilitate the
network construction and management. Furthermore, under the spe-
cific flow control mechanism the livelock/deadlock free probabilistic
weighted routing algorithm POW helps CLOT achieve a better load
balancing than the deterministic routing algorithms. The extensive si-
mulations further prove the good performance of CLOT network with
respect to average path length, throughput, network latency and fault
tolerance.
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