
IEEE Wireless Communications • June 2019 1611536-1284/19/$25.00 © 2019 IEEE

AbstrAct
Recently, deep learning has been used to tackle

mobile sensing problems, and the inference phase
of deep learning is preferred to be run on mobile
devices for speedy responses. However, mobile
devices are resource-constrained platforms for both
computation and power. Moreover, an inference
task with deep learning involves tens of billions of
mathematical operations and tens of millions of
parameter reads. Thus, it is a critical issue to reduce
the energy consumption of deep learning inference
algorithms. In this article, we survey various energy
reduction approaches, and classify them into three
categories: the compressing neural network model,
minimizing the data transfer required in compu-
tation, and offloading workloads. Moreover, we
simulate and compare three techniques of model
compression, by applying them to an object recog-
nition problem.

IntroductIon
Modern mobile devices are equipped with var-
ious sensors such as GPS, camera, accelerator,
gyroscope, and so on. Based on these sensors,
many mobile sensing applications are developed,
such as tracking, locating, object recognition,
and so on. Nowadays, deep learning is used
to tackle these mobile sensing problems [1–6],
since it can achieve higher accuracy than tradi-
tional methods. The big success can be attribut-
ed to three main reasons. First, neural networks
containing tens of millions of parameters have
powerful generalization capability. Second, a
large volume of sensing data enables the training
of neural networks to converge. Third, automatic
feature extraction from raw data avoids manual
feature designing.

The computation of a deep learning problem
consists of training and inference. For training, the
parameters of a neural network are adjusted such
that the prediction error is minimized. This process
is not only data-intensive but also compute-inten-
sive, and thus has to run on a server or a cluster
of servers. For inference, the well trained model
receives new data, and yields a prediction result.

When using a neural network for an inference
task, we desire that an accurate result is produced
with low latency and with little energy consumed.
Accuracy is already determined by model design
and training before starting inference. Latency and
energy consumption are a pair of opposing objec-

tives, and highly depend on where the inference
task runs. On the one hand, if it runs on the serv-
er side, then it has to be called remotely from the
mobile device; as a result, latency would be high
but energy consumption would be low. Here, we
consider only the energy consumed by the mobile
device rather than by the server, since the former
is energy-constrained while the latter is not. On the
other hand, if the inference task runs on the mobile
device side, then latency would be low but ener-
gy consumption would be huge for energy-con-
strained mobile devices.

The reason for huge energy consumption is that
each inference, a forward pass in a neural network,
involves tens of billions of arithmetic operations
and tens of millions of parameter reads [7]. More-
over, this inference may be called frequently by
mobile sensing applications, draining energy very
quickly.

To obtain speedy responses, it is preferred to
place inference on the mobile device side. As a
result, the most challenging problem is how to
reduce the energy consumption involved in neural
network inference. In this article, we survey various
approaches to improve energy efficiency, and clas-
sify them into three categories: the compressing
neural network model, minimizing the data transfer
required in computation and offloading workloads.
The first two approaches aim to reduce the energy
cost by memory access. The compressing model
decreases the amount of model parameters; min-
imizing data transfer reduces the amount of data
reads. The offloading approach decreases energy
by utilizing both local low-power processors and
remote energy-abundant devices.

We make two contributions in this article:
• Our work is the first to survey all three kinds of

approaches, which are highly relevant to ener-
gy-critical applications.

• We simulate and compare the techniques of
model compression, by applying them to an
object recognition problem.
Note that we only consider inference tasks

using a convolutional neural network (CNN). Those
tasks using a recurrent neural network (RNN),
which involve recurrent feedback connections, are
beyond the scope of this article. They are more
challenging, because it is unknown in advance how
many feedback cycles will take place. It is however
useful in some RNN-CNN hybrid networks where
the parameter count of the CNN dominates (e.g.,
networks for Visual Question Answering).

Ruitao Xie, Xiaohua Jia, Lu Wang, and Kaishun Wu

Energy Efficiency Enhancement for
CNN-based Deep Mobile Sensing

Ruitao Xie, Lu Wang and Kaishun Wu (corresponding author) are with Shenzhen University;
Kaishun Wu is also with Peng Cheng Laboratory; Xiaohua Jia is with City University of Hong Kong.

Digital Object Identifier:
10.1109/MWC.2019.1800321

ACCEPTED FROM OPEN CALL

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 11,2023 at 14:28:01 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • June 2019162

This article is organized as follows. First, we
present the framework of using deep learning for
mobile sensing applications. Second, we introduce
three categories of energy reduction approaches.
We discuss core ideas, challenging issues and solu-
tions, together with trade-off s for each of them. We
simulate and compare the techniques of model
compression, present open research issues. Finally,
we conclude this article.

deep mobIle sensIng: An oVerVIew
In this section, we fi rst introduce the basic frame-
work by which the deep learning approach is
used to solve a mobile sensing problem. Then, we
give a brief introduction to the structure of neural
networks.

frAmework
For an application using the deep learning approach,
there are four important phases, as shown in Fig. 1.
First, a neural network has to be designed. Second,
abundant sensing data have to be collected and
labeled, which is to identify the true prediction result
for each sensing measurement. Third is training. A
collection of data are fed into the designed model,
and then its parameters are adjusted iteratively until
the prediction error becomes suffi ciently low. Finally,
a neural network model is obtained for inference.
New data is given as an input of the model, and
then after a forward pass through the model an
inference result is produced.

As illustrated in Fig. 1, the training phase is
placed on the server side, while the inference is
placed on the side of the mobile device. This is

because training is not only data-intensive but also
compute-intensive. A neural network normally has
tens of millions of parameters; it needs sufficient
data and computation to make the learning algo-
rithm converge. Thus, the training process can only
be executed on a server or a cluster of servers.
Compared to training, inference is less compute-in-
tensive, since only one forward pass through the
model is required for each task. It thus may be able
to run on mobile devices.

neurAl networks
A neural network is the core of deep learning.
As shown in Fig. 2, a model receives an input at
one end, transforms it through a series of hidden
layers and produces a result at the other end. The
output of a hidden layer is called activation. The
activation of a layer is the input of the following
layer. There are several types of hidden layers.
Among them, the fully connected layer and con-
volutional layer are the most important. We intro-
duce each of them below.

As shown in Fig. 2, a fully connected layer is
always illustrated as a column of neurons. In each
layer, every neuron is connected to all the neu-
rons of the previous layer. Each connection has a
weight and each neuron has a bias, both of which
are learnable parameters. For each neuron, the
output value is computed as f(wTx + b), where f
is a nonlinear function, for example, ReLU f(y) =
max(0, y), w is a vector of weights corresponding
to the full connections toward this neuron, x is the
output of the previous layer, and b is a bias corre-
sponding to this neuron.

FIGURE 1. The framework of a deep mobile sensing application.

Data Collection Labeled Sensing Data

Trained Model

Initial Model

Sensing Data

Accelerator

GPS

Gyroscope

Microphone

Camera Tracking

Locating

Object
Recognition

Speech
Recognition

Augmented
Reality

Server

Sensor Inference

ApplicationMobile Device

Training

Model Design

Sensing Data

1

2 3

4

FIGURE 2. An illustration of a neural network structure. An input is transformed to an output through a
series of convolutional (CONV) layers and fully connected (FC) layers.

depth

width

Filters

Input

. . .

CONV Layer FC Layer Output

he
ig

ht

CONV Layer FC Layer

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 11,2023 at 14:28:01 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • June 2019 163

A convolutional layer is always illustrated as a
block of neurons in three dimensions, i.e., width,
height, and depth, as shown in Fig. 2. For each
neuron, instead of connecting to all the neurons
in the previous layer, it connects only to a local
region, which is small along width and height but
extends through the full depth of the input volume.
As illustrated in Fig. 2, the green neuron of the sec-
ond layer connects to the input-layer neurons cov-
ered by the green block. This block of connection
weights is called a filter or kernel. By sliding a filter
across the width and the height of the input layer
and computing dot products between the filter and
the input region, a 2-dimensional activation map is
produced. The bias parameters and the nonlinear
function similar as above are also applied here.
When several filters are adopted, several activation
maps are produced, each of which corresponds to
a depth slice. As shown in Fig. 2, the yellow filter
produces the top activation map, while the green
filter produces the bottom one.

Model design is to decide the structure of a
neural network for an application. Once the struc-
ture is determined, an optimization problem is for-
mulated, that is to find values for the parameters
(weights and biases) such that a prediction error is
minimized. The problem is solved using a gradient
descent algorithm. Finally, a neural network with
parameters known is ready for inference tasks.

ApproAches for energy effIcIency
In the execution of inference tasks, energy con-
sumption is dominated by memory access. As
shown in Fig. 3, memory (DRAM) access is two
orders of magnitude more energy expensive
than a float multiplication operation [8]. Thus, a
straightforward idea for energy reduction is to
decrease the amount of memory access. Since
the majority of memory accesses are reading
model parameters into processors, a possible
energy reduction approach is to decrease the
amount of model parameters, i.e., the compress-
ing model. The smaller a model becomes, the less
memory energy is consumed. When the model
is sufficiently small, it can even be stored in a
SRAM cache, which is very limited in capacity but
as energy efficient as an arithmetic operation, as
shown in Fig. 3.

In computing an inference, each time a batch
of operations execute, data (input activation and
weights) have to be fetched from memory. Redun-
dant data reading may happen. For example, in a
convolutional layer the kernel weights are shared
across an input activation. Thus, data reading can be
optimized to avoid repeated reading and improve
energy efficiency, i.e., minimizing data transfer.

For an inference, besides memory access, the
other part of energy is mainly consumed by the
computations in the CPU and GPU, which con-
sists of several billion or even tens of billions of
operations. Fortunately, besides the energy-hun-
gry processors, modern mobile devices are usu-
ally equipped with low-power processors such as
an LPU and DSP. This provides an opportunity to
reduce energy by offloading some computation on
them. This idea can be extended to remote ener-
gy-abundant devices such as cloud servers.

We summarize these approaches and their fea-
tures in Table 1. None of them is free of sacrifice:
the compressing model may trade off accuracy;

minimizing data transfer needs designing special-
ized hardware; offloading may trade off latency
and network usage. When choosing an approach
to use, different trade-offs have to be made. In the
following, we introduce each of the approaches.

compressIng model
The compressing model aims to reduce the
amount of model parameters. Neural networks
are usually extremely over parameterized,
because designing a complex model to achieve
high accuracy is generally easier than designing
a simple model that performs equally well, as the
latter requires skills and time that are not always
available. Since they contain large redundancy,
they are capable of compression. However, this
may result in the loss of accuracy. Thus, a chal-
lenging issue is to maximally simplify the model
while mitigating resulting accuracy loss. Sever-
al approaches have been proposed to solve this
problem, such as pruning unimportant parame-
ters, replacing some layers with low-rank approx-
imations and quantizing weights to enforce the
representation with lower bits. We introduce each
of them below, followed by a simulation.

Network Pruning: With network pruning, all
the connections whose weights are below a thresh-
old are removed. The value of the threshold affects
the trade-off between network sparsity and the
loss of accuracy. After pruning, the resulting sparse
neural network is retrained in order to mitigate the
accuracy loss. This process of pruning following
retraining may be repeated several times to further
improve sparsity. This approach is used in [9], and
can reduce model size and computation by nine
times with negligible accuracy loss.

Layer Decomposition: Another approach to
reduce model redundancy is layer decomposition.
It exploits some techniques of matrix approxima-
tion to decrease parameter redundancy, while
mitigating accuracy degradation. Singular value
decomposition (SVD), a common matrix approxi-
mation, can be used to compress the convolutional
layers, by representing a large number of filters as
the linear combinations of a much smaller set of
filters [10]. This can effectively reduce the num-

FIGURE 3. The energy consumption of 32-bit operations on a 45nm CMOS
process [8].

0

1

2

3

4

5

6

638

639

640

int additio
n

�oat additio
n

register �le

int m
ult.

�oat m
ult.

SRAM cache

DRAM memory
0.1

0.9 1.0

3.1
3.7

5

640
Energy (pJ)

Arithmetic Operation
Data Access

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 11,2023 at 14:28:01 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • June 2019164

ber of parameters by a factor of two to three with
negligible accuracy loss, and also accelerate the
computation by a factor of four or more.

Quantization: Another powerful approach
to reduce the model size is quantizing model
weights to enforce that many connections share
the same value. In this way, a neural network is
represented by several full-precision weights and
codewords with fewer bits, and thus becomes
significantly smaller. A quantization algorithm nor-
mally has a pipeline as follows. First, it generates a
code book. Second, it quantizes weights accord-
ing to the code book and produces quantiza-
tion indices. Finally, it encodes these indices into
codewords. A model after quantization is always
retrained to fine-tune the quantized values and
mitigate accuracy loss.

Next, we introduce the strategies used in each
step. First, before the generation of a code book,
the number of quantized values, denoted by N,
should be determined first. In [9], all convolution-
al layers use 256 quantized values (8 bits) and all
fully-connected layers use 32 quantized values (5
bits). It is also possible to use different N for each
layer. For instance, in [11] the authors proposed
an optimization approach to identify the optimal N
for each layer, by minimizing the quantization error
across all layers. With N determined, the code book
can be generated in several ways. One way is to use
k-means clustering to group weights into N clusters,
and take the centroids of clusters as a code book, as
in [9]. Another way is to partition the value range of
the weights into equal intervals as in [11]. Second,
the quantization step is straightforward. Each weight
is transformed to be an index by identifying a cluster
or an interval where the weight belongs. Finally, for
coding, either fixed-length coding or variable-length
coding can be used. Huffman coding, a famous vari-
able-length coding algorithm, is used in [9], which
can further reduce the model size compared to
fixed-length coding.

Among quantization approaches, there are two
extreme cases worth discussing: binary and ternary
quantization, where only binary (1 bit) or ternary
values (2 bits) and one or two shared weights are
needed to represent a neural model. For example,
in a ternary approach TTQ [12], the parameters
are quantized to {–wn, 0, + wp}, where coefficients
wn and wp are shared by each layer and learned
from training. The quantization signs are deter-
mined according to some thresholds, which are
selected by minimizing the L2 distance between
ternary and full-precision weights. TTQ compresses

model AlexNet by 16 times. In addition, BNN [13]
is a binary quantization, where all parameters are
quantized to {–1, +1}. The quantization signs are
determined by a probabilistic method.

In conclusion, a compressed model is usually
several or even 20 times smaller than the original
one. Model compression improves energy effi-
ciency due to three reasons. First, a sufficient small
model is possible to be stored in SRAM, which is
significantly more energy efficient than memory
access. Second, the amount of storage access,
from either DRAM or SRAM, is reduced drastically.
Third, the energy consumed by computation also
decreases due to fewer operations after compres-
sion. This kind of approach can also reduce latency
due to reduced operations. However, it may result
in a bit of accuracy loss, but usually can be mitigat-
ed by retraining.

Simulation and Comparison: We simulate the
above techniques with TensorFlow and compare
their performance. Our result is consistent with
existing works and demonstrates that these tech-
niques are effective in energy reduction.

We use a VGG-16 neural network to perform a
100-class object recognition on a CIFAR-100 data-
set. We start from fine-tuning a well-trained VGG-
16 model on an ImageNet dataset, and obtain a
model with the top-five accuracy of 75.29 percent
after training for 50 epochs. This model is 513 MB
and contains 30.9 billion FLOP. Then, we compress
this model. We summarize the result as follows:
• After pruning 70 percent weights, we reduce

the model to 154 MB and the amount of FLOP
to 9.7 billion. After fine-tuning for one epoch,
the accuracy becomes 75.02 percent, which is
very similar to the unpruned one.

• 90 percent pruning reduces the model to 51
MB and the amount of FLOP to 3.2 billion.
After training for 32 epochs, the accuracy
reaches 73.27 percent, which is slightly lower
than the unpruned case.

• We use SVD-based layer decomposition to
all layers. This reduces the model to 89 MB
and the amount of FLOP to 8.8 billion. After
fine-tuning, the accuracy reaches 73.55 per-
cent.

• With 8-bit fixed point quantization, we reduce
the model to 128 MB. The accuracy is 75.33
percent after fine-tuning, which is similar to the
original one.
We illustrate the result in Fig. 4. The energy is

reduced by a factor of 2∼5, which is significant.
Energy is computed by considering both data
access and arithmetic operations. The former is
computed by multiplying the model size and the
energy consumed by accessing DRAM memory in
Fig. 3, while the later is computed by multiplying
the FLOP count and the energy consumption of a
single FLOP. For 32-bit FLOP, we assume its energy
consumption is 2.3 pJ (averaging multiplication
and addition operations as in Fig. 3), while for 8-bit
quantized FLOP, we conservatively approximate
that as 1.6 pJ (averaging integer multiplication and
addition operations).

mInImIzIng dAtA trAnsfer
The approach of minimizing data transfer also
aims to reduce the energy cost of memory access.

Data Reuse: Instead of naively reading input
data for all operations, the data for an operation

TABLE 1. Three categories of energy reduction approaches.

Categories Approaches Ref. Trade-offs
Additional
benefits

Compressing model

Network pruning [9]

Accuracy SpeedupLayer decomposition [10]

Quantization [9, 11–13]

Minimizing data
transfer

Data reuse [14]
Specialized hardware Speedup

Data sparsity [8, 15]

Offloading
Local offloading [3] Latency, network

usage
—

Remote offloading [4]

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 11,2023 at 14:28:01 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • June 2019 165

may be reused by some other operations. This data
reuse is possible due to the structure of neural net-
works, as illustrated in Fig. 2. For any convolutional
layer, there are several kinds of data reuse:
• Filter reuse: each fi lter is reused in computing all

the neurons of the same output activation map.
• Convolutional reuse: a filter is moved with a

small stride, which is less than the fi lter width.
As such, some pixels of an input activation are
reused in computing neighboring output neu-
rons.

• Input activation reuse: each input activation is
reused by all fi lters to generate multiple output
activation maps.
The fi rst two patterns are suitable for convolu-

tional layers rather than fully connected layers. In
contrast, the last one is proper for both.

Many research works have been proposed to
leverage data reuse to minimize data transfer and
thus improve energy efficiency. Among recent
works, Eyeriss [14] is a notable one, which uses
all kinds of data reuse. It is shown that for convo-
lutional layers their approach minimizes memory
accesses by maintaining the data transfer in local
registers. Each register is a tiny storage of 512
bytes, located in each processing element and 200
times more energy effi cient than memory access.

Data Sparsity: Besides the data reuse, anoth-
er characteristic of CNN computation is that a
substantial amount of activations are zero, 50-70
percent for typical datasets [15]. This is because
negative activations are transformed to zero by the
non-linear ReLU function. Since the zero values in
activations contribute nothing to computation, they
can be eliminated from memory reading and com-
puting for energy effi ciency.

The similar sparsity also appears in the weights
of either pruned networks or ternary networks,
as discussed in model compression. Those zero
weights can also be avoided in data delivery and
computation.

These sparsity patterns are exploited in several
works, among which SCNN [15] and EIE [8] are
notable. SCNN maintains the sparse activations
and weights in a compressed form throughout the
entire computation and is 2.3 times more ener-
gy efficient than the dense computing approach.
SCNN is designed for convolutional layers, while
EIE is designed for fully connected layers. In EIE, it
is reported that leveraging weight sparsity reduces
energy consumption to 1/10, and leveraging acti-
vation sparsity reduces to 1/3.

In conclusion, the approaches exploiting data
reuse and sparsity can improve energy effi ciency,
and they can shorten latency due to local data
access and a reduced amount of computations.
They do not affect the accuracy of inference,
because no approximation is involved. However,
implementing these approaches always requires
the design of specialized hardware.

offloAdIng
The third type of approach to save energy is to
utilize heterogeneous resources either locally or
remotely.

Local Off loading: Low-power processing units
such as LPUs and DSPs provide an opportunity to
reduce computational energy by off loading some
workloads. However, naive offloading may result
in unwanted long latency, because low-power pro-

cessing units usually take a longer time to compute.
Thus, smart off loading which can make a trade-off
between energy effi ciency and latency is required.
It can be formulated as a scheduling problem, that
is to partition an inference task (a forward pass in a
neural network) into several subtasks and then allo-
cate each of them to one of the processors, such
that the energy consumption is minimized while
the latency requirement is satisfi ed.

For partitioning an inference task, each layer
may be partitioned into several parts (subtasks),
each computing for a group of neurons. In order
to formulate the offloading problem, the energy
consumption and the latency taken by each sub-
task running on different processors have to be
known. This can be obtained by an off line profi ling.
However, there may be other applications running
on the same device and contending for these pro-
cessors, so that the latency may be aff ected. Thus,
a better approach is to do profi ling under various
levels of processor utilization, and select a profi led
record according to real-time utilization. These real-
time system conditions are obtained by a resource
monitor.

So far, the offloading problem can be for-
mulated as an integer linear programming (ILP).
We give a simple example here. Suppose we are
dealing with a layer of a neural network, which
is composed of m computational units. Here, a
computational unit is considered as computing the
output value for a single neuron. In addition, sup-
pose there are n processors available. From off line
profiling and resource monitoring, we can learn
the energy and the time per unit of computation
consumed by each processor. Then, the problem is
to determine the amount of computations assigned
on each processor. It is formulated as an ILP. The
objective is to minimize the total amount of ener-
gy, while the constraint is to make the latency
requirement satisfi ed for every processor.

Next, the problem is solved by a solver, such as a
heuristic algorithm. Finally, a scheduler assigns each
subtask on its allocated processor. The pipeline of
the off loading approach is illustrated in Fig. 5.

DeepX [3] is an interesting work using this
approach. In this work, the offloading problem is

FIGURE 4. Energy vs accuracy, where the circle size represents model size.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 11,2023 at 14:28:01 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • June 2019166

formulated as minimizing a weighted sum of ener-
gy consumption and execution latency, and solved
by using a standard ILP solver.

Remote Offloading: Besides local computa-
tional resources, we may utilize remote resources
through the network, such as a cloud server or an
edge server.

Naively offloading the entire workload to
remote servers may be unsatisfied due to several
reasons. First, data transmission incurs delay. In a
complex network environment, the delay may be
unpredictable, and a lengthy delay may be unac-
ceptable for some applications. Second, data
transmission itself consumes energy, sometimes
more than the energy required for doing all the
computation locally [3]. Third, depending on the
nature of the application, partitioning the work-
load could achieve a good balance between
transmission delay and energy consumption.
For example, some neural networks transform
high dimensional inputs to low dimensional
features in the first few layers, and then spend
most of the time working on those features. In
this scenario, it is quite reasonable to process
high dimensional inputs locally and send the low
dimensional features to a remote server for fur-
ther processing.

Partitioning the workload leads to an optimi-
zation problem. In optimization formulation, the
energy consumed by remote resources needs no
consideration and the computational latency on
remote resources is negligible sometimes. Howev-
er, the energy and latency consumed by network
transfer is significant and have to be considered.

LEO [4] is a scheduler that offloads an inference
task to both local processors and remote resourc-
es. In this work, a heuristic algorithm is proposed
to solve the formulated ILP. As a result, the runtime
of scheduling is short and the energy cost is low,
which enables frequent re-scheduling.

 In conclusion, the offloading approach utilizes
low-power processors and remote energy-abun-
dant devices to reduce energy consumption at a
tolerable cost of latency.

open Issues
There are still many challenges and open issues
with energy-efficient deep mobile sensing.

dynAmIcAlly selectIng model And Input
As we mentioned in the discussion of the com-
pressing model, simplifying neural networks
trades off accuracy for low complexity. With sev-
eral different accuracy requirements, a catalog of
neural models with different levels of complexity
and energy consumption are obtained. Then, the
most energy-efficient model can be selected from
the catalog depending on the dynamic accuracy
requirements and energy constraints. The model
catalog concept appears in [6], but no light-
weight approaches are proposed. In addition, the
sensing data with various resolutions should be
considered as well, for example, the images with
different resolutions. Dynamically selecting both
input and model may further reduce energy.

offlIne schedulIng And cAchIng
For offloading approaches, each time an inference
task arrives, its scheduling model is updated with
the latest system conditions (such as processor
utilization, network speed, and so on) and solved
again. Frequently calling the solver is inefficient,
since it consumes both computation and ener-
gy resources and causes latency. For this issue, a
promising method is using offline scheduling and
caching rather than online scheduling. In this way,
an optimization model is formulated for each
possible system condition and solved in advance.
Those solutions are cached and can be reused in
future scheduling. However, the amount of sys-
tem conditions possibly happening is vast. Due
to the limited cache space, a small group of sys-
tem conditions can be selected and serve as the
approximations for others.

conclusIons
For deep mobile sensing, it is a challenging issue
to reduce the energy consumption of the infer-
ence job executed on mobile devices. In this
article, we surveyed various of energy reduction
approaches and classified them into three cat-
egories: compressing model, minimizing data
transfer and offloading. We discussed motivations,
challenging issues and solutions, as well as perfor-
mance trade-offs for each of them. Finally, several
open research issues are discussed.

Acknowledgments
This work was supported by the Young Scientists
Fund of China NSF (Grant No. 61802263); the
Faculty Research Fund of Shenzhen University
(2019050); Tencent Rhino-Bird Young Faculty
Research Fund; and Peacock Plan Research Fund. It
was partially supported by China NSF (61872248,
61872246, U1736207); Guangdong NSF
(2017A030312008); Shenzhen Science and Tech-
nology Foundation (JCYJ20170302140946299,
J C Y J 2 0 1 7 0 4 1 2 1 1 0 7 5 3 9 5 4 ,
JCYJ20170817095418831); Fok Ying-Tong Edu-
cation Foundation for Young Teachers in the
Higher Education Institutions of China (161064),
GDUPS (2015). It was also partially supported by
the Tianjin Key Laboratory of Advanced Network-
ing (TANK); the project "PCL Future Regional

FIGURE 5. The pipeline of an offloading approach. The inference task can be
offloaded to either local low-power processors or remote servers.

Solver
Min Energy
s.t. Latency Requirement

Local Resources Remote Resources

CPU GPU LPU DSP

Partitioning

Trained Neural Network

Cloud Server Edge Server

Resource Monitor

Scheduler

O�ine Pro�ling

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 11,2023 at 14:28:01 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • June 2019 167

Network Facilities for Large-scale Experiments and
Applications (PCL2018KP001)"; and the Guang-
dong Special Support Program.

references
[1] S. Yao et al., “Deepsense: A Unified Deep Learning Frame-

work for Time-Series Mobile Sensing Data Processing,” Proc.
26th Int’l. Conf. World Wide Web, 2017, pp. 351–60.

[2] P. Georgiev et al., “Accelerating Mobile Audio Sensing Algo-
rithms through On-Chip GPU Offloading,” Proc. 15th Annual
Int’l. Conf. Mobile Systems, Applications, and Services, 2017,
pp. 306–18.

[3] N. D. Lane et al., “DeepX: A Software Accelerator for
Low-Power Deep Learning Inference on Mobile Devices,”
Proc. 2016 15th ACM/IEEE Int’l. Conf. Information Processing
in Sensor Networks (IPSN), April 2016, pp. 1–12.

[4] P. Georgiev et al., “LEO: Scheduling Sensor Inference
Algorithms Across Heterogeneous Mobile Processors and
Network Resources,” Proc. 22nd Annual Int’l. Conf. Mobile
Computing and Networking, 2016, pp. 320–33.

[5] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile
GPU-Based Deep Learning Framework for Continu-
ous Vision Applications,” Proc. 15th Annual Int’l. Conf.
Mobile Systems, Applications, and Services, 2017, pp.
82–95.

[6] S. Han et al., “MCDNN: An Approximation-Based Execution
Framework for Deep Stream Processing under Resource
Constraints,” Proc. 14th Annual Int’l. Conf. Mobile Systems,
Applications, and Services, 2016, pp. 123–36.

[7] A. Canziani, E. Culurciello, and A. Paszke, An Analysis of
Deep Neural Network Models for Practical Applications;
available: https://arxiv.org/pdf/1605.07678.pdf

[8] S. Han et al., “EIE: Efficient Inference Engine on Compressed
Deep Neural Network,” Proc. 2016 ACM/IEEE 43rd Annual
Int’l. Symposium on Computer Architecture (ISCA), June
2016, pp. 243–54.

[9] S. Han, H. Mao, and W. J. Dally, “Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding,” Proc. 4th Int’l. Conf.
Learning Representations, May 2016.

[10] X. Zhang et al., “Accelerating Very Deep Convolutional
Networks for Classification and Detection,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 38, no. 10, Oct.
2016, pp. 1943–55.

[11] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed
Point Quantization of Deep Convolutional Networks,”
Proc. 33rd Int’l. Conf. Machine Learning, vol. 48, 2016, pp.
2849–58.

[12] C. Zhu et al., “Trained Ternary Quantization,” Proc. 5th Int’l.
Conf. Learning Representations, Apr. 2017.

[13] Z. Lin et al., “Neural Networks with Few Multiplications,”
Proc. 4th Int’l. Conf. Learning Representations, May 2016.

[14] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural
Networks,” Proc. 43rd Int’l. Symposium on Computer Archi-
tecture, 2016, pp. 367–79.

[15] A. Parashar et al., “SCNN: An Accelerator for Com-
pressed-Sparse Convolutional Neural Networks,” Proc. 44th
Annual Int’l. Symposium on Computer Architecture, 2017,
pp. 27–40.

bIogrAphIes
Ruitao Xie received her Ph.D. degree in computer science from
City University of Hong Kong in 2014, and the B.Eng. degree
from Beijing University of Posts and Telecommunications in
2008. She is currently an assistant professor at the College of
Computer Science and Software Engineering, Shenzhen Univer-
sity. Her research interests include mobile computing, distribut-
ed systems and cloud computing.

Xiaohua Jia received his B.Sc. (1984) and M.Eng. (1987) from
the University of Science and Technology of China, and a D.Sc.
(1991) in information science from the University of Tokyo. He
is currently Chair Professor with the Dept. of Computer Sci-
ence at the City University of Hong Kong. His research interests
include cloud computing and distributed systems, data security
and privacy, computer networks and mobile computing. He is
an editor of IEEE Internet of Things, IEEE Transactions on Parallel
and Distributed Systems (2006-2009), Wireless Networks, Journal
of World Wide Web, and the Journal of Combinatorial Optimiza-
tion, among others. He is the General Chair of ACM MobiHoc
2008, TPC Co-Chair of IEEE GlobeCom 2010-Ad Hoc and Sen-
sor Networking Symp, and Area-Chair of IEEE INFOCOM 2010,
2015-2017. He is a Fellow of IEEE.

Lu Wang is currently an assistant professor at the College of
Computer Science and Software Engineering, Shenzhen Univer-
sity. She received the B.S. degree in communication engineering
from Nankai University in 2009, and the Ph.D. degree in com-
puter science and engineering from Hong Kong University of
Science and Technology in 2013. Her research interests focus
on wireless communications and mobile computing.

Kaishun Wu received his Ph.D. degree in computer science
and engineering from HKUST in 2011. After that, he worked
as a research assistant professor at HKUST. In 2013, he joined
SZU as a distinguished professor. He has co-authored two books
and published over 100 high quality research papers in inter-
national leading journals and prime conferences, such as IEEE
TMC, IEEE TPDS, ACM MobiCom, and IEEE INFOCOM. He is
the inventor of six U.S. and over 90 Chinese pending patents.
He received the 2012 Hong Kong Young Scientist Award, the
2014 Hong Kong ICT Awards: Best Innovation and 2014 IEEE
ComSoc Asia-Pacific Outstanding Young Researcher Award. He
is an IET Fellow.

Partitioning the
workload leads to an

optimization problem.
In optimization for-

mulation, the energy
consumed by remote

resources needs no
consideration and the

computational latency
on remote resources is

negligible sometimes.
However, the energy

and latency consumed
by network transfer is

significant and have to
be considered.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 11,2023 at 14:28:01 UTC from IEEE Xplore. Restrictions apply.

