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AbstrAct
Recently, deep learning has been used to tackle 

mobile sensing problems, and the inference phase 
of deep learning is preferred to be run on mobile 
devices for speedy responses. However, mobile 
devices are resource-constrained platforms for both 
computation and power. Moreover, an inference 
task with deep learning involves tens of billions of 
mathematical operations and tens of millions of 
parameter reads. Thus, it is a critical issue to reduce 
the energy consumption of deep learning inference 
algorithms. In this article, we survey various energy 
reduction approaches, and classify them into three 
categories: the compressing neural network model, 
minimizing the data transfer required in compu-
tation, and offloading workloads. Moreover, we 
simulate and compare three techniques of model 
compression, by applying them to an object recog-
nition problem.

IntroductIon
Modern mobile devices are equipped with var-
ious sensors such as GPS, camera, accelerator, 
gyroscope, and so on. Based on these sensors, 
many mobile sensing applications are developed, 
such as tracking, locating, object recognition, 
and so on. Nowadays, deep learning is used 
to tackle these mobile sensing problems [1–6], 
since it can achieve higher accuracy than tradi-
tional methods. The big success can be attribut-
ed to three main reasons. First, neural networks 
containing tens of millions of parameters have 
powerful generalization capability. Second, a 
large volume of sensing data enables the training 
of neural networks to converge. Third, automatic 
feature extraction from raw data avoids manual 
feature designing.

The computation of a deep learning problem 
consists of training and inference. For training, the 
parameters of a neural network are adjusted such 
that the prediction error is minimized. This process 
is not only data-intensive but also compute-inten-
sive, and thus has to run on a server or a cluster 
of servers. For inference, the well trained model 
receives new data, and yields a prediction result.

When using a neural network for an inference 
task, we desire that an accurate result is produced 
with low latency and with little energy consumed. 
Accuracy is already determined by model design 
and training before starting inference. Latency and 
energy consumption are a pair of opposing objec-

tives, and highly depend on where the inference 
task runs. On the one hand, if it runs on the serv-
er side, then it has to be called remotely from the 
mobile device; as a result, latency would be high 
but energy consumption would be low. Here, we 
consider only the energy consumed by the mobile 
device rather than by the server, since the former 
is energy-constrained while the latter is not. On the 
other hand, if the inference task runs on the mobile 
device side, then latency would be low but ener-
gy consumption would be huge for energy-con-
strained mobile devices.

The reason for huge energy consumption is that 
each inference, a forward pass in a neural network, 
involves tens of billions of arithmetic operations 
and tens of millions of parameter reads [7]. More-
over, this inference may be called frequently by 
mobile sensing applications, draining energy very 
quickly.

To obtain speedy responses, it is preferred to 
place inference on the mobile device side. As a 
result, the most challenging problem is how to 
reduce the energy consumption involved in neural 
network inference. In this article, we survey various 
approaches to improve energy efficiency, and clas-
sify them into three categories: the compressing 
neural network model, minimizing the data transfer 
required in computation and offloading workloads. 
The first two approaches aim to reduce the energy 
cost by memory access. The compressing model 
decreases the amount of model parameters; min-
imizing data transfer reduces the amount of data 
reads. The offloading approach decreases energy 
by utilizing both local low-power processors and 
remote energy-abundant devices.

We make two contributions in this article: 
• Our work is the first to survey all three kinds of 

approaches, which are highly relevant to ener-
gy-critical applications.

• We simulate and compare the techniques of 
model compression, by applying them to an 
object recognition problem. 
Note that we only consider inference tasks 

using a convolutional neural network (CNN). Those 
tasks using a recurrent neural network (RNN), 
which involve recurrent feedback connections, are 
beyond the scope of this article. They are more 
challenging, because it is unknown in advance how 
many feedback cycles will take place. It is however 
useful in some RNN-CNN hybrid networks where 
the parameter count of the CNN dominates (e.g., 
networks for Visual Question Answering).
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This article is organized as follows. First, we 
present the framework of using deep learning for 
mobile sensing applications. Second, we introduce 
three categories of energy reduction approaches. 
We discuss core ideas, challenging issues and solu-
tions, together with trade-off s for each of them. We 
simulate and compare the techniques of model 
compression, present open research issues. Finally, 
we conclude this article.

deep mobIle sensIng: An oVerVIew
In this section, we fi rst introduce the basic frame-
work by which the deep learning approach is 
used to solve a mobile sensing problem. Then, we 
give a brief introduction to the structure of neural 
networks.

frAmework
For an application using the deep learning approach, 
there are four important phases, as shown in Fig. 1. 
First, a neural network has to be designed. Second, 
abundant sensing data have to be collected and 
labeled, which is to identify the true prediction result 
for each sensing measurement. Third is training. A 
collection of data are fed into the designed model, 
and then its parameters are adjusted iteratively until 
the prediction error becomes suffi  ciently low. Finally, 
a neural network model is obtained for inference. 
New data is given as an input of the model, and 
then after a forward pass through the model an 
inference result is produced.

As illustrated in Fig. 1, the training phase is 
placed on the server side, while the inference is 
placed on the side of the mobile device. This is 

because training is not only data-intensive but also 
compute-intensive. A neural network normally has 
tens of millions of parameters; it needs sufficient 
data and computation to make the learning algo-
rithm converge. Thus, the training process can only 
be executed on a server or a cluster of servers. 
Compared to training, inference is less compute-in-
tensive, since only one forward pass through the 
model is required for each task. It thus may be able 
to run on mobile devices.

neurAl networks
A neural network is the core of deep learning. 
As shown in Fig. 2, a model receives an input at 
one end, transforms it through a series of hidden 
layers and produces a result at the other end. The 
output of a hidden layer is called activation. The 
activation of a layer is the input of the following 
layer. There are several types of hidden layers. 
Among them, the fully connected layer and con-
volutional layer are the most important. We intro-
duce each of them below.

As shown in Fig. 2, a fully connected layer is 
always illustrated as a column of neurons. In each 
layer, every neuron is connected to all the neu-
rons of the previous layer. Each connection has a 
weight and each neuron has a bias, both of which 
are learnable parameters. For each neuron, the 
output value is computed as f(wTx + b), where f
is a nonlinear function, for example, ReLU f(y) = 
max(0, y), w is a vector of weights corresponding 
to the full connections toward this neuron, x is the 
output of the previous layer, and b is a bias corre-
sponding to this neuron. 

FIGURE 1. The framework of a deep mobile sensing application.
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FIGURE 2. An illustration of a neural network structure. An input is transformed to an output through a 
series of convolutional (CONV) layers and fully connected (FC) layers.
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A convolutional layer is always illustrated as a 
block of neurons in three dimensions, i.e., width, 
height, and depth, as shown in Fig. 2. For each 
neuron, instead of connecting to all the neurons 
in the previous layer, it connects only to a local 
region, which is small along width and height but 
extends through the full depth of the input volume. 
As illustrated in Fig. 2, the green neuron of the sec-
ond layer connects to the input-layer neurons cov-
ered by the green block. This block of connection 
weights is called a filter or kernel. By sliding a filter 
across the width and the height of the input layer 
and computing dot products between the filter and 
the input region, a 2-dimensional activation map is 
produced. The bias parameters and the nonlinear 
function similar as above are also applied here. 
When several filters are adopted, several activation 
maps are produced, each of which corresponds to 
a depth slice. As shown in Fig. 2, the yellow filter 
produces the top activation map, while the green 
filter produces the bottom one.

Model design is to decide the structure of a 
neural network for an application. Once the struc-
ture is determined, an optimization problem is for-
mulated, that is to find values for the parameters 
(weights and biases) such that a prediction error is 
minimized. The problem is solved using a gradient 
descent algorithm. Finally, a neural network with 
parameters known is ready for inference tasks.

ApproAches for energy effIcIency
In the execution of inference tasks, energy con-
sumption is dominated by memory access. As 
shown in Fig. 3, memory (DRAM) access is two 
orders of magnitude more energy expensive 
than a float multiplication operation [8]. Thus, a 
straightforward idea for energy reduction is to 
decrease the amount of memory access. Since 
the majority of memory accesses are reading 
model parameters into processors, a possible 
energy reduction approach is to decrease the 
amount of model parameters, i.e., the compress-
ing model. The smaller a model becomes, the less 
memory energy is consumed. When the model 
is sufficiently small, it can even be stored in a 
SRAM cache, which is very limited in capacity but 
as energy efficient as an arithmetic operation, as 
shown in Fig. 3.

In computing an inference, each time a batch 
of operations execute, data (input activation and 
weights) have to be fetched from memory. Redun-
dant data reading may happen. For example, in a 
convolutional layer the kernel weights are shared 
across an input activation. Thus, data reading can be 
optimized to avoid repeated reading and improve 
energy efficiency, i.e., minimizing data transfer.

For an inference, besides memory access, the 
other part of energy is mainly consumed by the 
computations in the CPU and GPU, which con-
sists of several billion or even tens of billions of 
operations. Fortunately, besides the energy-hun-
gry processors, modern mobile devices are usu-
ally equipped with low-power processors such as 
an LPU and DSP. This provides an opportunity to 
reduce energy by offloading some computation on 
them. This idea can be extended to remote ener-
gy-abundant devices such as cloud servers.

We summarize these approaches and their fea-
tures in Table 1. None of them is free of sacrifice: 
the compressing model may trade off accuracy; 

minimizing data transfer needs designing special-
ized hardware; offloading may trade off latency 
and network usage. When choosing an approach 
to use, different trade-offs have to be made. In the 
following, we introduce each of the approaches.

compressIng model
The compressing model aims to reduce the 
amount of model parameters. Neural networks 
are usually extremely over parameterized, 
because designing a complex model to achieve 
high accuracy is generally easier than designing 
a simple model that performs equally well, as the 
latter requires skills and time that are not always 
available. Since they contain large redundancy, 
they are capable of compression. However, this 
may result in the loss of accuracy. Thus, a chal-
lenging issue is to maximally simplify the model 
while mitigating resulting accuracy loss. Sever-
al approaches have been proposed to solve this 
problem, such as pruning unimportant parame-
ters, replacing some layers with low-rank approx-
imations and quantizing weights to enforce the 
representation with lower bits. We introduce each 
of them below, followed by a simulation.

Network Pruning: With network pruning, all 
the connections whose weights are below a thresh-
old are removed. The value of the threshold affects 
the trade-off between network sparsity and the 
loss of accuracy. After pruning, the resulting sparse 
neural network is retrained in order to mitigate the 
accuracy loss. This process of pruning following 
retraining may be repeated several times to further 
improve sparsity. This approach is used in [9], and 
can reduce model size and computation by nine 
times with negligible accuracy loss.

Layer Decomposition: Another approach to 
reduce model redundancy is layer decomposition. 
It exploits some techniques of matrix approxima-
tion to decrease parameter redundancy, while 
mitigating accuracy degradation. Singular value 
decomposition (SVD), a common matrix approxi-
mation, can be used to compress the convolutional 
layers, by representing a large number of filters as 
the linear combinations of a much smaller set of 
filters [10]. This can effectively reduce the num-

FIGURE 3. The energy consumption of 32-bit operations on a 45nm CMOS 
process [8].
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ber of parameters by a factor of two to three with 
negligible accuracy loss, and also accelerate the 
computation by a factor of four or more.

Quantization: Another powerful approach 
to reduce the model size is quantizing model 
weights to enforce that many connections share 
the same value. In this way, a neural network is 
represented by several full-precision weights and 
codewords with fewer bits, and thus becomes 
significantly smaller. A quantization algorithm nor-
mally has a pipeline as follows. First, it generates a 
code book. Second, it quantizes weights accord-
ing to the code book and produces quantiza-
tion indices. Finally, it encodes these indices into 
codewords. A model after quantization is always 
retrained to fine-tune the quantized values and 
mitigate accuracy loss.

Next, we introduce the strategies used in each 
step. First, before the generation of a code book, 
the number of quantized values, denoted by N, 
should be determined first. In [9], all convolution-
al layers use 256 quantized values (8 bits) and all 
fully-connected layers use 32 quantized values (5 
bits). It is also possible to use different N for each 
layer. For instance, in [11] the authors proposed 
an optimization approach to identify the optimal N 
for each layer, by minimizing the quantization error 
across all layers. With N determined, the code book 
can be generated in several ways. One way is to use 
k-means clustering to group weights into N clusters, 
and take the centroids of clusters as a code book, as 
in [9]. Another way is to partition the value range of 
the weights into equal intervals as in [11]. Second, 
the quantization step is straightforward. Each weight 
is transformed to be an index by identifying a cluster 
or an interval where the weight belongs. Finally, for 
coding, either fixed-length coding or variable-length 
coding can be used. Huffman coding, a famous vari-
able-length coding algorithm, is used in [9], which 
can further reduce the model size compared to 
fixed-length coding.

Among quantization approaches, there are two 
extreme cases worth discussing: binary and ternary 
quantization, where only binary (1 bit) or ternary 
values (2 bits) and one or two shared weights are 
needed to represent a neural model. For example, 
in a ternary approach TTQ [12], the parameters 
are quantized to {–wn, 0, + wp}, where coefficients 
wn and wp are shared by each layer and learned 
from training. The quantization signs are deter-
mined according to some thresholds, which are 
selected by minimizing the L2 distance between 
ternary and full-precision weights. TTQ compresses 

model AlexNet by 16 times. In addition, BNN [13] 
is a binary quantization, where all parameters are 
quantized to {–1, +1}. The quantization signs are 
determined by a probabilistic method.

In conclusion, a compressed model is usually 
several or even 20 times smaller than the original 
one. Model compression improves energy effi-
ciency due to three reasons. First, a sufficient small 
model is possible to be stored in SRAM, which is 
significantly more energy efficient than memory 
access. Second, the amount of storage access, 
from either DRAM or SRAM, is reduced drastically. 
Third, the energy consumed by computation also 
decreases due to fewer operations after compres-
sion. This kind of approach can also reduce latency 
due to reduced operations. However, it may result 
in a bit of accuracy loss, but usually can be mitigat-
ed by retraining.

Simulation and Comparison: We simulate the 
above techniques with TensorFlow and compare 
their performance. Our result is consistent with 
existing works and demonstrates that these tech-
niques are effective in energy reduction.

We use a VGG-16 neural network to perform a 
100-class object recognition on a CIFAR-100 data-
set. We start from fine-tuning a well-trained VGG-
16 model on an ImageNet dataset, and obtain a 
model with the top-five accuracy of 75.29 percent 
after training for 50 epochs. This model is 513 MB 
and contains 30.9 billion FLOP. Then, we compress 
this model. We summarize the result as follows:
• After pruning 70 percent weights, we reduce 

the model to 154 MB and the amount of FLOP 
to 9.7 billion. After fine-tuning for one epoch, 
the accuracy becomes 75.02 percent, which is 
very similar to the unpruned one.

• 90 percent pruning reduces the model to 51 
MB and the amount of FLOP to 3.2 billion. 
After training for 32 epochs, the accuracy 
reaches 73.27 percent, which is slightly lower 
than the unpruned case.

• We use SVD-based layer decomposition to 
all layers. This reduces the model to 89 MB 
and the amount of FLOP to 8.8 billion. After 
fine-tuning, the accuracy reaches 73.55 per-
cent.

• With 8-bit fixed point quantization, we reduce 
the model to 128 MB. The accuracy is 75.33 
percent after fine-tuning, which is similar to the 
original one.
We illustrate the result in Fig. 4. The energy is 

reduced by a factor of 2∼5, which is significant. 
Energy is computed by considering both data 
access and arithmetic operations. The former is 
computed by multiplying the model size and the 
energy consumed by accessing DRAM memory in 
Fig. 3, while the later is computed by multiplying 
the FLOP count and the energy consumption of a 
single FLOP. For 32-bit FLOP, we assume its energy 
consumption is 2.3 pJ (averaging multiplication 
and addition operations as in Fig. 3), while for 8-bit 
quantized FLOP, we conservatively approximate 
that as 1.6 pJ (averaging integer multiplication and 
addition operations).

mInImIzIng dAtA trAnsfer
The approach of minimizing data transfer also 
aims to reduce the energy cost of memory access.

Data Reuse: Instead of naively reading input 
data for all operations, the data for an operation 

TABLE 1. Three categories of energy reduction approaches.

Categories Approaches Ref. Trade-offs
Additional 
benefits

Compressing model

Network pruning [9]

Accuracy SpeedupLayer decomposition [10]

Quantization [9, 11–13]

Minimizing data 
transfer

Data reuse [14]
Specialized hardware Speedup

Data sparsity [8, 15]

Offloading
Local offloading [3] Latency, network 

usage
—

Remote offloading [4]
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may be reused by some other operations. This data 
reuse is possible due to the structure of neural net-
works, as illustrated in Fig. 2. For any convolutional 
layer, there are several kinds of data reuse:
• Filter reuse: each fi lter is reused in computing all 

the neurons of the same output activation map.
• Convolutional reuse: a filter is moved with a 

small stride, which is less than the fi lter width. 
As such, some pixels of an input activation are 
reused in computing neighboring output neu-
rons.

• Input activation reuse: each input activation is 
reused by all fi lters to generate multiple output 
activation maps.
The fi rst two patterns are suitable for convolu-

tional layers rather than fully connected layers. In 
contrast, the last one is proper for both.

Many research works have been proposed to 
leverage data reuse to minimize data transfer and 
thus improve energy efficiency. Among recent 
works, Eyeriss [14] is a notable one, which uses 
all kinds of data reuse. It is shown that for convo-
lutional layers their approach minimizes memory 
accesses by maintaining the data transfer in local 
registers. Each register is a tiny storage of 512 
bytes, located in each processing element and 200 
times more energy effi  cient than memory access.

Data Sparsity: Besides the data reuse, anoth-
er characteristic of CNN computation is that a 
substantial amount of activations are zero, 50-70 
percent for typical datasets [15]. This is because 
negative activations are transformed to zero by the 
non-linear ReLU function. Since the zero values in 
activations contribute nothing to computation, they 
can be eliminated from memory reading and com-
puting for energy effi  ciency.

The similar sparsity also appears in the weights 
of either pruned networks or ternary networks, 
as discussed in model compression. Those zero 
weights can also be avoided in data delivery and 
computation.

These sparsity patterns are exploited in several 
works, among which SCNN [15] and EIE [8] are 
notable. SCNN maintains the sparse activations 
and weights in a compressed form throughout the 
entire computation and is 2.3 times more ener-
gy efficient than the dense computing approach. 
SCNN is designed for convolutional layers, while 
EIE is designed for fully connected layers. In EIE, it 
is reported that leveraging weight sparsity reduces 
energy consumption to 1/10, and leveraging acti-
vation sparsity reduces to 1/3.

In conclusion, the approaches exploiting data 
reuse and sparsity can improve energy effi  ciency, 
and they can shorten latency due to local data 
access and a reduced amount of computations. 
They do not affect the accuracy of inference, 
because no approximation is involved. However, 
implementing these approaches always requires 
the design of specialized hardware.

offloAdIng
The third type of approach to save energy is to 
utilize heterogeneous resources either locally or 
remotely.

Local Off loading: Low-power processing units 
such as LPUs and DSPs provide an opportunity to 
reduce computational energy by off loading some 
workloads. However, naive offloading may result 
in unwanted long latency, because low-power pro-

cessing units usually take a longer time to compute. 
Thus, smart off loading which can make a trade-off  
between energy effi  ciency and latency is required. 
It can be formulated as a scheduling problem, that 
is to partition an inference task (a forward pass in a 
neural network) into several subtasks and then allo-
cate each of them to one of the processors, such 
that the energy consumption is minimized while 
the latency requirement is satisfi ed.

For partitioning an inference task, each layer 
may be partitioned into several parts (subtasks), 
each computing for a group of neurons. In order 
to formulate the offloading problem, the energy 
consumption and the latency taken by each sub-
task running on different processors have to be 
known. This can be obtained by an off line profi ling. 
However, there may be other applications running 
on the same device and contending for these pro-
cessors, so that the latency may be aff ected. Thus, 
a better approach is to do profi ling under various 
levels of processor utilization, and select a profi led 
record according to real-time utilization. These real-
time system conditions are obtained by a resource 
monitor.

So far, the offloading problem can be for-
mulated as an integer linear programming (ILP). 
We give a simple example here. Suppose we are 
dealing with a layer of a neural network, which 
is composed of m computational units. Here, a 
computational unit is considered as computing the 
output value for a single neuron. In addition, sup-
pose there are n processors available. From off line 
profiling and resource monitoring, we can learn 
the energy and the time per unit of computation 
consumed by each processor. Then, the problem is 
to determine the amount of computations assigned 
on each processor. It is formulated as an ILP. The 
objective is to minimize the total amount of ener-
gy, while the constraint is to make the latency 
requirement satisfi ed for every processor.

Next, the problem is solved by a solver, such as a 
heuristic algorithm. Finally, a scheduler assigns each 
subtask on its allocated processor. The pipeline of 
the off loading approach is illustrated in Fig. 5.

DeepX [3] is an interesting work using this 
approach. In this work, the offloading problem is 

FIGURE 4. Energy vs accuracy, where the circle size represents model size.
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formulated as minimizing a weighted sum of ener-
gy consumption and execution latency, and solved 
by using a standard ILP solver.

Remote Offloading: Besides local computa-
tional resources, we may utilize remote resources 
through the network, such as a cloud server or an 
edge server.

Naively offloading the entire workload to 
remote servers may be unsatisfied due to several 
reasons. First, data transmission incurs delay. In a 
complex network environment, the delay may be 
unpredictable, and a lengthy delay may be unac-
ceptable for some applications. Second, data 
transmission itself consumes energy, sometimes 
more than the energy required for doing all the 
computation locally [3]. Third, depending on the 
nature of the application, partitioning the work-
load could achieve a good balance between 
transmission delay and energy consumption. 
For example, some neural networks transform 
high dimensional inputs to low dimensional 
features in the first few layers, and then spend 
most of the time working on those features. In 
this scenario, it is quite reasonable to process 
high dimensional inputs locally and send the low 
dimensional features to a remote server for fur-
ther processing.

Partitioning the workload leads to an optimi-
zation problem. In optimization formulation, the 
energy consumed by remote resources needs no 
consideration and the computational latency on 
remote resources is negligible sometimes. Howev-
er, the energy and latency consumed by network 
transfer is significant and have to be considered.

LEO [4] is a scheduler that offloads an inference 
task to both local processors and remote resourc-
es. In this work, a heuristic algorithm is proposed 
to solve the formulated ILP. As a result, the runtime 
of scheduling is short and the energy cost is low, 
which enables frequent re-scheduling.

 In conclusion, the offloading approach utilizes 
low-power processors and remote energy-abun-
dant devices to reduce energy consumption at a 
tolerable cost of latency.

open Issues
There are still many challenges and open issues 
with energy-efficient deep mobile sensing.

dynAmIcAlly selectIng model And Input
As we mentioned in the discussion of the com-
pressing model, simplifying neural networks 
trades off accuracy for low complexity. With sev-
eral different accuracy requirements, a catalog of 
neural models with different levels of complexity 
and energy consumption are obtained. Then, the 
most energy-efficient model can be selected from 
the catalog depending on the dynamic accuracy 
requirements and energy constraints. The model 
catalog concept appears in [6], but no light-
weight approaches are proposed. In addition, the 
sensing data with various resolutions should be 
considered as well, for example, the images with 
different resolutions. Dynamically selecting both 
input and model may further reduce energy.

offlIne schedulIng And cAchIng
For offloading approaches, each time an inference 
task arrives, its scheduling model is updated with 
the latest system conditions (such as processor 
utilization, network speed, and so on) and solved 
again. Frequently calling the solver is inefficient, 
since it consumes both computation and ener-
gy resources and causes latency. For this issue, a 
promising method is using offline scheduling and 
caching rather than online scheduling. In this way, 
an optimization model is formulated for each 
possible system condition and solved in advance. 
Those solutions are cached and can be reused in 
future scheduling. However, the amount of sys-
tem conditions possibly happening is vast. Due 
to the limited cache space, a small group of sys-
tem conditions can be selected and serve as the 
approximations for others.

conclusIons
For deep mobile sensing, it is a challenging issue 
to reduce the energy consumption of the infer-
ence job executed on mobile devices. In this 
article, we surveyed various of energy reduction 
approaches and classified them into three cat-
egories: compressing model, minimizing data 
transfer and offloading. We discussed motivations, 
challenging issues and solutions, as well as perfor-
mance trade-offs for each of them. Finally, several 
open research issues are discussed.
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Partitioning the 
workload leads to an 

optimization problem. 
In optimization for-

mulation, the energy 
consumed by remote 

resources needs no 
consideration and the 

computational latency 
on remote resources is 

negligible sometimes. 
However, the energy 

and latency consumed 
by network transfer is 

significant and have to 
be considered.
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