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Supporting a massive amount of Internet of Things applications requires a large pool of spectrum. DSM is

a promising ecosystem to improve the spectrum efficiency. In the era of LoRaWAN, the physical hardware

constraints, along with the bandwidth-hungry applications pose new challenges. In this article, we investi-

gate a novel deep-reinforcement-learning-based spectrum-sharing paradigm, termed Intelligent Overlapping,

that explores partially overlapping channels for concurrent spectrum access in LoRaWAN. Our key insight

is to leverage the coding redundancy to expand the available spectrum without complicated data processing

algorithms. In particular, we learn the extra coding redundancy from the data on the non-overlapping spec-

trum via a deep-Q-learning network, and we apply such redundancy to recover the data on the overlapping

spectrum. In the Media Access Control layer, we predict the channel condition and strategically learn and

assign the appropriate overlapping portion to the concurrent access end devices. In the Physical layer, we

harness interleaving to randomize the mutual interference to ensure that all the data remains decodable. Sim-

ulation results demonstrate that Intelligent Overlapping greatly improves the spectrum efficiency with a fast

convergence rate compared to the conventional DSM mechanisms.
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1 INTRODUCTION

Recently, Low-power Wide Area Networks (LPWAN) becomes a promising networking para-
digm for connecting billions of low-power Internet of Things (IoT) devices. It allows long-range
communications at a low bit rate. Among which, Long-range WAN (LoRaWAN) is one of the
most representative LPWAN technologies, which serves a large volume of coexisting IoT devices,
and thus gained tremendous attention from both academy and industry. Accordingly, more and
more innovative applications are emerging, such as smart metering, machine-to-machine commu-
nication, road traffic monitoring, face recognition, which introduce an ever-increasing demand for
large pool of spectrum resource [8] in LoRaWAN. It is forecasted that there will be 41.6 billion con-
nected IoT devices by 2025, generating 79.4 ZB of data annually. Moreover, benefiting from long
communication range, the IoT devices can send data over one-hop uplink to an LoRaWAN gate-
way, resulting in more collisions in a larger coverage area within the same spectrum. Therefore,
to support the increasing demand for ubiquitous connectivity in LoRaWAN, we are in the midst
of a spectrum management revolution [27].

With the paradox between the spectrum scarcity problem and the underutilization of the static
spectrum allocation strategy, a paradigm shift has been introduced from the fixed spectrum alloca-
tion towards dynamic spectrum management (DSM) [21]. DSM plays an increasingly impor-
tant role to improve spectral efficiency. In DSM, unlicensed users that were not allowed to transmit
before can now access the licensed spectrum along with the licensed users. The access mode can
be either opportunistic spectrum access or concurrent spectrum access. In the former mode, the
unlicensed users access the licensed spectrum only when the licensed users are inactive. While in
the latter mode, the unlicensed users coexist with the licensed users, as long as they keep their
transmission under the interference margin of the licensed users.

Conventional DSM rarely adopts partially overlapping channels (POC) for concurrent spec-
trum access [22]. Assigning appropriate POC for concurrent transmissions requires complicated
power control and interference cancellation algorithms, which is challenging and impractical for
low-power IoT devices with hardware constraints. Moreover, as the environments of the IoT de-
vices are highly dynamic, it is intractable to measure the complete and accurate channel infor-
mation for POC assignment [25]. Benefiting from long communication range, the IoT devices can
send data over one-hop uplink to an LoRaWAN gateway, resulting in more collisions in a larger
coverage area. Therefore, the use of POC becomes inevitable and exhibits great potential to fully
utilize the spectrum efficiency in LoRaWAN.

Last decade has witnessed a significant achievement in artificial intelligence (AI) [40]. Ac-
cordingly, AI techniques have been applied to DSM to meet various technical challenges, includ-
ing channel selection [31], spectrum occupancy analysis [4], cooperative spectrum sensing [28],
and so on. Instead of establishing a DSM model based on complete and accurate information, AI
techniques can help to learn or explore the access strategy from the surroundings, and adjust
the strategy periodically to the dynamic environment. Recent studies have demonstrated that AI
techniques are effective to improve system robustness and spectrum efficiency in practice [38].
Despite the surging interest in AI-based DSM, when it comes to POC assignment, there still exist
some challenges. For example, how to leverage the characteristics of POC transmissions for con-
current spectrum access with lightweight computational overhead remains a concern. Moreover,
as the surroundings for connected IoT devices are highly dynamic, agility and adaptiveness are
also required in the POC assignment architecture.

In this article, we investigate the potential solutions to cope with these challenges, and we pro-
pose a novel deep-learning-based spectrum sharing paradigm that explores POC for concurrent
spectrum access in LoRaWAN. A primary concern upon concurrent spectrum access on POC is
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the unbalanced channel condition caused by the partially overlapping interference. Possible so-
lutions include complicated power control or interference cancellation algorithms, which is not
suitable for IoT devices with physical hardware constraints. In this article, we aim to leverage the
extra coding redundancy in the existing error correcting codes (ECC) to enable coexistence on
POC. The existing ECCs add redundancy to the transmitted signal, so that errors caused by noise
during transmission can be corrected at the receiver. Normally, such protection is beyond the de-
coding capacity. As the channel condition is unbalanced in POC, we can leverage the extra coding
redundancy from the clean data on the non-overlapping spectrum to recover the collided data on
the overlapping spectrum. Specifically, we propose an Intelligent Overlapping (IO) paradigm to
strategically randomize the interference among the entire spectrum. In this way, a uniform error
distribution is created for further data recovery. As different POC portions have distinct impact on
the coding redundancy, Intelligent Overlapping tries to learn the coding redundancy and select the
appropriate overlapping portion according to the channel condition. Through IO, IoT devices can
coexist on POC without complicated power control and interference cancellation. We further pro-
pose a deep-learning-based channel prediction algorithm to estimate the dynamic environments
for POC assignment.

We have implemented Intelligent Overlapping with Matlab and Python. Our experiments
show that compared with traditional fixed spectrum allocation paradigm, intelligent interleaving
achieves higher spectrum usage efficiency under different channel conditions. In summary, our
main contributions over existing works are:

• We have proposed an Intelligent Overlapping paradigm for LoRaWAN to improve the spec-
trum usage efficiency. To the best of our knowledge, this is the first work of its kind in the
literature to strategically leverage the extra coding redundancy in the existing ECC to enable
low-power IoT device coexistence on POC.
• We have presented the entire design of Intelligent Overlapping based on a Deep-Q-learning

network (DQN). Compared to the traditional fixed spectrum allocation paradigm, Intelli-
gent Overlapping unleashes the potential of POC and achieves a more intelligent spectrum
access paradigm.
• We have demonstrated the feasibility of Intelligent Overlapping through extensive simula-

tions in Matlab and Python. Numerous experimental results show that Intelligent Overlap-
ping outperforms competitive spectrum allocation paradigm with a fast convergence rate.

2 RELATED WORK

Intelligent Overlapping builds on top of extensive research works in overlapping channel trans-
missions, interference cancellation and machine-learning-based spectrum management. In this
section, we briefly introduce the research works that closely relate to Intelligent Overlapping.

2.1 Collision Resolution in LoRaWAN

Deploying large-scale LoRaWAN is promising yet challenging. To simplify the network design,
ALOHA protocol is adopted for media access control in LoRaWAN, and Chirp Spread Spectrum

(CSS) is adopted for Physical (PHY) modulation. Each IoT device transmits data without trying
to detect whether the LoRaWAN channel is idle or busy. The long communication range enables
concurrency for a large volume of IoT devices, yet also leads to frequent collisions among the
coexisting devices.

Recent advances in media access control as well as concurrent transmission methods mitigate
the collision problem. Choir [9] is the first work of its kind to resolve collisions for LoRaWAN,
which harnessed hardware imperfections of LoRaWAN devices to recover the collided packets.
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In Reference [33], the authors proposed mLoRa to resolve collision in time domain. It estimates
the collided samples and subtracting them from collisions, and thus gains the collision-free packets.
In Reference [36], the authors proposed Ftrack to separate collided transmissions by jointly con-
sidering both the features in both time domain and frequency domain. They extended their work
and proposed PCube, a phase-based parallel packet decoder for concurrent transmissions of LoRa
nodes [35]. In Reference [29], the authors proposed NScale to decompose concurrent transmis-
sions by leveraging subtle inter-packet time offsets for low SNR LoRa collisions. In Reference [30],
the authors discovered that the collided pattern remains unchanged during a transmission. Thus
they proposed CoLoRa to recover the collided packets through successive demodulation windows.
In Reference [26], the authors proposed Concurrent Interference Cancellation (CIC), which
enables concurrent decoding of multiple collided LoRa packets. [15] proposed NELoRa, a DNN
model that exploits the amplitude and phase features of chirp symbols and recovers these chirp
symbols under collision.

Besides the above research, researchers tried to solve the collisions from the data link layer per-
spective. In Reference [2], the authors proposed a time-division multiple access (TDMA)-based
media access protocol for LoRaWAN. In Reference [10], the authors explored the PHY indicator
termed Channel Activity Detection (CAD), to enable carrier sense multiple access (CSMA)

for LoRaWAN. Unlike the above-mentioned research, our proposed Intelligent Overlapping tries
to make little change to the PHY layer to enable concurrent transmissions for LoRaWAN.

2.2 Overlapping Channel Transmission

The growing demand for high speed wireless services overburdens the spectrum usage, and leads
to dense deployed wireless networks. As evidenced by previous measurement studied [3], many
802.11 access points in range of each other use overlapping channels. Therefore, researchers put
their efforts into concurrent transmission in partially overlapping channels. In Reference [22], the
authors first promoted the idea that simultaneous use of partially overlapping channels is not al-
ways harmful. This contra-intuitive design demonstrated significant improvements by a careful
use of some partially overlapping channels in 802.11b WLAN with direct sequence spread spec-

trum (DSSS) at physical layer. The authors of Reference [37] further proposed a complete design
in wireless sensor networks to encourage non-orthogonal transmissions, which was also built atop
DSSS modulation. The above feasibility cannot be directly applied to 802.11g/n. The reason stems
from the distinct PHY layer. Unlike DSSS that spread every single bit information over an entire
spectrum, OFDM adopted by 802.11g/n divides the spectrum into multiple subcarriers. The over-
lapping portion has a much lower signal-to-interference and noise ratio (SINR) compared
with that in DSSS modulation. Thus, it is very difficult to recover the collided portion.

In Reference [5], the authors tried to enable the partially overlapping transmissions in TV white
space with different channel widths. Remap in Reference [16] took a detour to leverage the partially
concurrent transmissions, which exploit collision-free subcarriers for decoding through multiple
retransmissions. However, MPAM [12] and ASN [39] directly nulled the overlapping portion used
by neighboring WiFi subcarriers, and utilized spectrum fragments for partially concurrent trans-
mission. Unlike previous works, our proposed Intelligent Overlapping aims to exploit extra coding
redundancy from the collided spectrum, and leverage it for partially concurrent transmission in
IoT networks.

2.3 Interference Cancellation

Our work also relates to existing interference cancellation techniques in wireless communications.
Traditionally, when two or more packet transmissions arrive at a receiver simultaneously, only
the strongest signal can be decoded. However, successive interference cancellation (SIC) [7]
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facilitates recovery of even the weaker signal. Extensive research has been proposed to demon-
strate the effectiveness of SIC, such as ANC [14], ZigZag [11], and Full-Duplex [13]. However,
SIC requires tight synchronization and has certain computational overhead. Meanwhile, Refer-
ences [32, 34] utilized pre-defined interference pattern to produce an extra control panel. The con-
trol information obtained by interference cancellation is limited, yet the computational overhead is
also reduced. Compared with References [32, 34], our design simply utilizes the coding redundancy
to recover the collided symbol. Although we share the similar methodology, our design purpose
is quite different.

2.4 Machine-learning-based Spectrum Management

With the development of machine learning techniques in recent years, researchers’ attention are
diverted towards intelligent techniques to access the spectrum dynamically and efficiently. In Ref-
erence [24], the authors addressed the dynamic spectrum access problem in multichannel wireless
networks based on deep reinforcement learning (DRL). To estimate the accurate state with
partial observation, they integrated an long short-term memory (LSTM) into a DQN. The ex-
periment results demonstrated that the proposed scheme doubled the spectrum utilization only
with ACK signals. In Reference [19], the authors studied anti-jamming communications without
the estimation of jamming patterns. A convolutional neural network (CNN) was incorporated
with a DQN, where the DQN agent learned the dynamic environment with limited prior knowledge.
To improve the spectrum usage in a highly dynamic environment, the authors of Reference [18] in-
vestigated a fingerprint-based DQN for vehicle-to-vehicle (V2V) networks. The V2V links were
acting as agents to interact with the environment. The results showed that with proper training,
the V2V agents were able to learn the cooperation strategy distributively, and thus improve the
overall capacity of V2V networks. Compared with the existing-state-of-the-art, our work lever-
ages the POC to improve the spectrum usage efficiency, and tries to learning the appropriate POC
portion by interacting with the environment.

3 POC ASSIGNMENT FOR LORAWAN: CHALLENGES AND DESIGN PRINCIPLES

In this article, we envision a typical LoRaWAN environment with mobile edge computing

(MEC), serving a large amount of IoT devices [1]. As demonstrated in Figure 1, the network is
consisted of multiple hierarchies, including access layer, mobile edge and the central cloud. IoT
devices are connected to the network through gateways. The gateways act as the mobile edge
with computation and communication ability. The central cloud contains data resources and a
centralized controller. We choose a software defined MEC architecture for illustration as the data
packet and control information can be separated. The access network can be abstracted to better
cater the connectivity of IoT devices. The mobile edge and the cloud, however, is responsible for
computation tasks and network management.

3.1 Design Challenges

With the dense deployment and long transmission range of IoT devices, the limited spectrum
resources turn out to be the bottleneck to fulfill the ever-growing transmission demand. It is
inevitable that multiple IoT devices within a same range have to use overlapping spectrum.
Concurrent spectrum access is promising to enhance the spectrum utilization in this backdrop.
While conventional approaches focus more on power control or interference cancellation, which
is not easy to realize on IoT devices with hardware constraint. Lightweight and intelligent
spectrum sharing paradigm is critical to fully utilize the spectrum efficiency. To be specific, we
ask the following questions as the design issues regarding the spectrum sharing technique:
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Fig. 1. A hierarchy of LoRaWAN to explore partially overlapping channel (POC) for concurrent spectrum

access, including (a) access layer, to enabled concurrent transmission on POC; (b) mobile edge, to conduct

channel prediction; and (c) central cloud, to intelligently learn the POC assignment strategy.

• Question 1: Whether there exists a lightweight concurrent transmission method, without
complicated computation, e.g., with little signal or data processing overhead for LoRaWAN?
• Question 2: If yes, then can we design an intelligent spectrum access strategy based on the

proposed transmission method, which can automatically learn and evolve itself according
to the environments?
• Question 3: The mobile networks are sensitive to the surroundings, resulting in dynamic

and unstable channel state, how can we cope with the complex and dynamic environments
to realize a practical current spectrum access architecture?

3.2 Motivation

To answer these questions, we dive into the network architecture down to the PHY layer. We
observe that concurrent transmissions on POC have unique characteristics. The data on the over-
lapping spectrum are almost corrupted and cannot be decoded due to the mutual interference from
the coexisting transmissions. While the data on the non-overlap portion are clean and easy to be
decoded. With such diverse decoding capacity, we aim to utilize the data on the non-overlapping
spectrum to “help” the data on the overlapping portion. It is known that the existing ECCs, e.g.,
Bose-Chaudhuri-Hocquenghem codes (BCH) or low-density parity-check (LDPC) adopted
by IoT devices, have sufficient coding redundancy. Thus careful use of such redundancy has the
potential to help recovery the corrupted data without jeopardizing the clean data.

To realize such capacity, we utilize an interleaver after the PHY layer coding process [6]. An
interleaver is commonly used in standard LoRa encoder/decoder to reduce the effect of burst errors.
By reordering the data that is to be transmitted, we can distribute the consecutive bytes of data
over a larger sequence of data. Traditional interleavers are designed fixed and pseudo-random, so
that the busted errors can be corrected by ECC under all circumstances. However, the fixed pseudo-
random interleaver cannot deal with the collision upon different overlapping ratios, as the SINR
would be below the decodable threshold. In case of concurrent spectrum access using POC, the
interleaver should be interference-aware when we leverage the clean data to help the corrupted

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 63. Publication date: March 2023.



Exploring Partially Overlapping Channels for Low-power Wide Area Networks 63:7

data. As different overlapping portions have diverse impact on the coexisting transmissions, the
interleaver should adapt its reordering strategy according to the overlapping pattern to better
utilize the coding redundancy.

Recently, DRL has drawn extensive attention from both academia and industry. By combining
reinforcement learning (RL) and deep learning (DL), DRL agents can interact with the sur-
roundings and learn their actions similar to the way humans learn from experience. To be specific,
RL guides an agent to reach a certain goal by interacting with the environments, observing the
reward and updating its knowledge. This exploring process helps it to find an optimal policy of
taking certain actions under particular system states. The value of state-action function is so called
Q-value, and an optimal policy will maximize the cumulated Q-value in a long term. RL works fine
when the state-action space is limited. Yet when the system has a large number of states and ac-
tions, which is typical in communication systems, the computation usually becomes complex and
takes long time to converge. To tackle this issue, deep neural network (DNN) is introduced in RL
to approximate the Q-values. The state is given as the input and the Q-value of all possible actions
is generated as the output. Also, the data are randomly sampled in minibatches from the target
network to break the correlation in a sequence of observation. As DRL is model-free, and data
samples are not necessary from an external supervisor, it is considered a promising tool to make
intelligent decisions. Furthermore, with extensive offline training, the online learning overhead
can be greatly reduced. In this article, we incorporate DRL to learn the reordering strategy accord-
ing to overlapping portion, and intelligently assign POCs to IoT devices for concurrent spectrum
access.

Another crucial issue is that, as the mobile networks are very sensible to environment dynam-
ics, the channel state may experience sudden change and affect the POC assignment [20]. The
assignment needs to be reconsidered once the channel condition changes. For instance, three mo-
bile devices are transmitting concurrently on POC as their channel conditions are good. In the
next time slot, the channel of one or more devices may change due to interference, shadowing,
or blockage. At this moment, the assignment may exacerbate the interference and damage all the
transmissions. On the contrary, if the channel state is poor currently and becomes good in the next
time slot, then the POC assignment may waste the concurrent transmission opportunity. There-
fore, in a dynamic IoT environment, channel prediction is a critical component and may affect the
network performance. We refer to a LSTM for channel prediction. LSTM is more capable of ex-
tracting inherent features underlying the channel matrix from the large amount of data. We adopt
parallel computing to speed up the neural network training and obtain the network weights. At
the gateway, data from multiple end devices are also computed paralleled to obtained the final
results. With the help of channel prediction, POC assignment can be more intelligent according to
the predicted channel.

3.3 Design Principle

The concurrent spectrum access architecture we envisioned in this article should be able to fa-
cilitate the IoT network in the following directions: (1) to embrace concurrent spectrum access
with little computational overhead; (2) to automatically learn the access strategy according to the
environments; and (3) to guarantee the spectrum access quality and efficiency against systems
dynamics. To be more specific, the concurrent spectrum access architecture should provide the
following capacities:

• Lightweight concurrent transmission upon POC: The network should have the capabil-
ity to embrace concurrent transmission on POC with little computational or data processing
overhead, to facilitate the concurrent spectrum access for LoRaWAN.
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Fig. 2. The building blocks of intelligent overlapping architecture for LoRaWAN.

• Intelligent redundancy learning and POC assignment: The network should have the
ability to automatically learn the existing coding redundancy and intelligently assign the
POC to encourage appropriate concurrent spectrum access according to the environments.
• Robustness to network dynamics: To cope with channel dynamics and user mobility,

the network should have the capacity to predict the channel variance, and guide the POC
assignment to maximize the spectrum usage efficiency.

4 A DEEP-LEARNING-BASED SPECTRUM SHARING UPON POC

To realize the design principles discussed in Section 3, we need to review the network architecture
down to the PHY layer. Exploring POC for concurrent spectrum access is promising, yet an appro-
priate design of the POC assignment technique is necessary to maximize the spectrum usage and
ensure the service quality for IoT devices. This section introduces a potential system-level solution.
We borrow the wisdom of PHY layer interleaving to exploit the ECC coding redundancy. In the up-
per layer, we incorporate DRL to automatically learn the POC assignment based on the proposed
PHY layer interleaving, and leverage LSTM to predict the channel dynamics. Together, we achieve
an efficient concurrent spectrum access architecture using POC for IoT devices in LoRaWAN.

4.1 Design Overview

Figure 1 illustrates a spectrum access scenario in LoRaWAN. The IoT devices, or the end devices,
are accessing the network via gateway. By enabling intelligent spectrum sharing, the end devices
can be served by the gateway simultaneously via POC. The gateway, as the mobile edge comput-
ing resource, is responsible for channel prediction. However, POC assignment learning is placed
at the central cloud, which is much resourceful and has high computational capacity. Each time a
gateway choose one or more end devices to transmit according to the POC assignment strategy.
For instance, in Figure 1, gateway 1 chooses three end devices for concurrent transmission on over-
lapping channels 1, 2, and 3, and gateway 2 chooses two end device for concurrent transmission
on overlapping channels 4 and 5. Instead of performing complex signal processing or interference
cancellation, the end device only needs to modify its interleaver and deinterleaver, which is sim-
ply a mapping after ECC, and can be easily implemented without extra computational overhead.
The prediction and learning process, which require computational resources, are at the mobile
edge and central cloud. Therefore, the proposed current spectrum access architecture is feasible in
practice and can fully unleash the potential of POC in LoRaWAN.

Figure 2 outlines the building blocks of the proposed architecture. The orange-colored blocks
are the extensions to the conventional transmission structure. In the upper layer, the channel
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prediction block at the gateway estimates the channel state information (CSI) in the next time
slot according to the history. The prediction results then are fed into the POC assignment learn-
ing block at the central controller to select the most appropriate POC strategy and feedback the
decision to the transmitter and receiver (e.g., the gateway and the end device). To reduce extra con-
trol message exchange in LoRaWAN, the end devices can append their transmit request on uplink
frame, and the gateway can piggyback the POC assignment decision through downlink messages
or time-synchronized beacons during broadcast window. In the PHY layer, the modified interleaver
at the transmitter (e.g., the gateway or the end device) reorders the transmit data to create uniform
error distribution according to the overlapping portion, and the deinterleaver at the receiver (e.g.,
the end device or the gateway) performs the inverse reordering defined by interleaver. Specifically,
the role of each network component is described as follows:

• end device at access layer. An UE accesses the spectrum following the conventional pro-
tocol. No additional operations are required except a modification to the interleaving pro-
cedure. When partially overlapping channels are adopted for concurrent transmissions, the
UE simply adapts its interleaving strategy according to the POC assignment.
• gateway at mobile edge. A gateway has the duty to provide spectrum access to the end

devices as in the existing mobile networks. Besides, since it is close to the end devices, the
channel prediction is conducted at the gateway. The prediction results are reported to the
central controller for POC assignment.
• Central controller at the cloud. The central controller at the cloud is responsible for net-

work control and management. With rich computational capacity, it is responsible for the
offline and online POC assignment learning. The learning results are feedback to the access
network for spectrum access.

4.2 Concurrent Transmission upon POC

The concurrent transmission ability upon POC is built on the wisdom of PHY layer interleaving.
In the existing communication systems, interleaving is an essential component to reduce the effect
of burst errors, and it is simple to implement. By reordering the transmitted data, the consecutive
bytes of data are distributed over a larger sequence of data to fight against the interference. Exist-
ing communication systems normally use fix reordering strategy [17]. When it comes to POC, the
situation is quite diverse. Different overlapping portions have different interference levels upon
ongoing transmissions. Therefore, the reordering strategy has to adapt according to the overlap-
ping portion. The basic idea is simple, yet realizing a practical interleaving strategy for POC still
needs careful design to reduce the computational overhead. Here, we do a little modification to
the existing interleaving method, to make it compatible with the existing communication systems.
The purpose is align with the original design, which creates a uniform error distribution among the
entire spectrum, but different in the way that the interleaving conducts the reordering according
to the overlapping portion.

The basic idea of the modified interleaver is demonstrated in Figure 3 for illustration. A basic
LoRaWAN channel is divided into seven blocks of channel spectrum as a toy example. Each block
contains several meta-blocks. The overlapping spectrum contains one block according to the as-
signment from the central cloud. To uniformly distribute the data on the overlapping blocks among
the entire blocks, two reordering functions are adopted. The first one is block-level permutation.
The goal is to separate two adjacent overlapping blocks. The second one is meta-block level, aim-
ing to isolate the meta-blocks with interference and uniformly distributed them among the entire
spectrum. A row-by-column interleaver is used to create such uniform interference distribution.
We assume that the interleaver matrix is with length N = Nrow ×Ncol , which writes the input bits
row-wise and reads the output bits column-wise. The number of the reshaped groups is Nrow , and
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Fig. 3. Illustration of a deep-Q-learning-network-based interleaving strategy to exploit coding redundancy.

the number of subcarriers in each reshaped group is Ncol . We can use the following equation to
denote the the permutation π ,

π (i ) = k = Ncol (i modNrow ) +

⌊
i

Nrow

⌋
, (1)

where i = 0, 1, . . . ,N is the bit location before interleaving, and k is the bit location after inter-
leaving. mod donates the modulo operation, and �x� represents the floor operation that returns
the greatest integer not exceeding x .

As for the deinterleaver at the receiver side, we define a two-step interleaver that performs the
inverse rotation,

π−1 (k ) = i = Nrow × k − (N − 1) ×
⌊

k

Ncol

⌋
. (2)

In one way, the interference can be interpolated into the non-overlapping clean data blocks. In
the other way, the resulting interference on the non-overlapping data blocks does not exceed the
interference margin, ensuring that all the data blocks is decodable. Therefore, the POC weight
(POC portion) is critical. We need to strategically make the decision to fully utilize the coding
redundancy according to the channel states. We will introduce the detailed design in the next
subsection.

4.3 Intelligent POC Assignment

To find the optimal POC assignment under different channel states, we first formulate the problem.
Assume that the IoT system has a set N = {1, 2, . . . ,n} end devices within the collision domain of
a gateway with the number of end devices n.

We consider a typical spectrum access scenario with POC, where two or more end device are
allowed to transmit on the same blocks of a channel. Our goal is to maximize the overall throughput
with an optimal POC assignment of different end device.

The traditional approaches to the assignment problem commonly rely on optimization theory.
Here, we employ a DQN to find the optimal strategy under different system states, that is, the
optimal POC assignment under different channel states. Each end device’s CSI is fed into DQN
as the input. The action of the agent is the POC weight assigned to each end device (i.e., the
overlapping portion designated to each end device). It is assumed that the agent is employed for
interacting with the environment with the objective to find the optimal actions that can maximize
the accumulated rewards Rt at time slot t within a sequence of states,

Rt =

T∑

t ′=t

γ t ′−trt ′, (3)
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where γ∈[0, 1] is the discount factor. rt is the reward at time slot t . To be specific, the state, the
action, and the reward are defined as follows:

(1) State S: the state of the agent has two components.
(a) The end device’s channel state information (CSI). Considering that channel is time-varying,

we use a LSTM neural network to predict, since LSTM performs well at modeling time
series data. The detail will be presented in Section 4.4.

(b) The end device’s signal to interference plus noise ratio (SINR). The POC assignment in-
fluences SINR of online end device and then if the transmission is successfull. Thus, SINR
also feeds back to the optimal POC assignment.

(2) ActionA: We define the action as the overlapping ratio that two or more agents are assigned
when they transmit concurrently on POC. The action space A includes all the appropriate
POC weight assignments.

(3) Reward rt : The reward rt at time slot t is related to the state st and the action at at the time
slot t . The reward function is designed to express the overall throughput. To this end, we
integrate the theoretical system utility UT and the practical system performance UP under
the selected action to define the reward at time slot t as

rt = λ1UT + λ2UP , (4)

where λ1 and λ2 are coefficients to balance the two indexes. UT and UP are expressed as
follows.

First, let Pi and ρi denote the transmission power and overlapping indicator assigned to
end device i with ρi = 1 if end device i reuses the spectrum of other end devices and ρi = 0
otherwise. hi is the channel gain for end device i . The SINR of end device i can be expressed
as

SINRi =
Pihi

σ 2 +
∑

k ∈N ,k�i ρkPkhk
, (5)

where σ 2 is the noise power. Pk denotes the transmission power of other concurrent trans-
mitting end devices and hk is the channel gain of other concurrent transmitting end devices.
Note that when there is no overlapping among all the users, the SINR is the SNR of end
device. Thus, the system utility UT for all n end devices is

UT =

n∑

i=1

Wi log(1 + SINRi ), (6)

whereWi is the bandwidth of end device i .
Then, we measure the practical system performanceUP by the system bit error rate (BER),
expressed as

UP =

n∑

i=1

(ηi + νiγi )
1

pbi + 1
, (7)

where ηi is the ratio of the bandwidth of end device i to the total bandwidth. νi is the over-
lapping portion assigned to end device i . p is the penalty of BER bi for end device i .

Figure 4 depicts the architecture of the DQN, where we adopt the same architecture for the policy
network and the target network. The policy network takes the CSI of each end device as the system
input, and returns the approximated POC weight of each end device as the system output. As for
the training process, we adopt the experience replay to reduce the correlation between training
samples [23]. The agent first sends the state st at time slot t to the policy network, which generates
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Fig. 4. The DQN architecture for POC assignment learning.

the Q-valuesQ (st ,a) of any action a inA. Based on the Q-values and following an ε-greedy policy,
the optimal action at is generated. Further, we can improve the policy by taking the action as

at = arд max
a∈A

Q (st ,a). (8)

Afterwards, the reward rt is obtained from the environment st . As for the the transition, which
consists of (st ,at , rt , st+1), is then stored into an experience replay memory. For each optimization
step, we collect minibatch of 32 transitions to update the policy network, and we use the policy
network state to update the target network for every 100 iterations. With the proposed DQN, the
agent at the central controller collects all the CSI from the end devices, and takes different actions
(i.e., selecting different POC weights) to get the Q-values. A certain action is chosen if it leads to a
maximized Q-values for a long term.

4.4 Channel Prediction

Although DQN has certain ability to observe the channel dynamics and take appropriate actions,
in IoT networks, as the environment always dynamics, the POC assignment decisions will be af-
fected due to the fast-varying channel state. Hence, channel prediction (CP) is also critical. Con-
sidering that the channels are time series, we utilize a LSTM neural network to conduct channel
prediction before the POC assignment. The deep LSTM has two primary building blocks, including
high-dimensional CSI extraction and channel generation. To be specific, high-dimensional CSI ex-
traction contains two bidirectional LSTM layers and three full-connected layers. The purpose is to
extract the features of the input CSI. Afterwards, the extracted CSI features are fed into the channel
generation, and gone through multiple fully connected layers. The generated channel are returned
as the final prediction results. We train the network using the mean-squared error (MSE) as the
loss function, which is calculated as

MSEi =
1

F

F∑

j=1

���CSIpr ed
j −CSIactual

j
���2, i ∈ N , (9)

where CSI
pr ed
j and CSIactual

j denote the predicted and actual channel state of end device i at the

jth frequency bin, respectively.
As we mentioned in Section 3, the CSI of each end device is collected by the gateway, either

by measured via the preamble, pilots or reported via the end device. Initially the gateway conduct
offline training to predict the channel state using the CSI history. Specifically, a sliding window of
size K is leveraged as the input. That means we use the CSI in previous K time slots to predict the
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Table 1. Configuration Parameters

Module Parameters Values

Channel model Rician Fading

Channel Doppler spectrum Jake’s model

Max Doppler shift 20Hz/50Hz

Sample rate 1MHz/3.84MHz

BiLSTM layers 2

Linear layers 3

Training algorithm Adam

Activation function ReLU

LSTM Cost function MSE

Dataset size 20,000

Batch size 128

Learning rate 1e-4

CNN layers 2

Linear layers 2

Training algorithm RMSprop

Activation function ReLU

Cost function Huber Loss

DQN Capacity of ER buffer 10,000

Mini-batch 32

Update Frequency 32

Learning rate 5e-3

Discount factor 0.9

channel in the next time slot. After offline training, online training helps the gateway to adjust the
prediction weight matrices to generate the predicted channel as the output. Then the prediction
results are reported to the central controller to help make POC assignment decisions.

5 EVALUATION

In this section, we conduct extensive simulations to evaluate the performance of the proposed
Intelligent Overlapping paradigm for LoRaWAN. We assume that each gateway is located at the
center of a cell and IoT devices are randomly distributed around BS. We adopted a typical Lo-
RaWAN environment with mobile edge computing (MEC). A gateway is associated with 50
LoRa nodes. There are total of 16 CH/SF combinations used. Each time a gateway chooses one or
more LoRa nodes to transmit with the same spread factor according to the POC assignment strat-
egy. For each transmission, the settings are with 10-chirp preamble, 16-byte payload, and 2 dB
transmission power. The wireless system is deployed in Matlab R2020a. To train the network, we
integrated Pytorch 1.9.0 with Matlab. The detailed configuration parameters are shown in Table 1.
We divide the evaluation into two parts: a) validation of channel prediction and b) performance of
intelligent overlapping. We also present the performance of fixed POC assignment and spectrum
access without POC as comparisons.

5.1 Performance of Intelligent Overlapping

In this subsection, we first evaluate the performance of the proposed Intelligent Overlapping par-
adigm, which consists of the following two parts: the feasibility of concurrent transmission upon
POC and the capacity of intelligent POC assignment to learn the optimal POC weight given certain
channel information.
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Fig. 5. Decoding capacity of the modified interleaver. Blue lines represent the BER with modified interleaver,

while green lines represents the BER with standard interleaver. The red line is the BER without POC.

Fig. 6. The channel responses of three representative channel models and the impulsive noise.

First, as shown in Table 1, we deploy two convolution layers and two fully connected hidden
layers with six neurons. RMSprop is used to optimize the model. DQN takes in the current channel
responses, and tries to predict the expected overlapping ratio of different end devices. During
training loops, the policy network weights are updated at each iteration while the target network
has its weights kept frozen and only updates every 100 iterations.

Then, we depict the decoding capacity with standard (blue lines) and modified interleaver (green
lines) given a certain overlapping scenario in Figure 5. With higher POC weights, the SINR becomes
higher. The red line is set as benchmark, which is the transmission without POC. As shown in the
figure, the standard interleaver constantly has high BER even the SINR is low, indicating that it is
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Fig. 7. The performance of different POC assignment strategies under channel 1. IO always learns and traces

the best curve.

not capable of dealing with POC. Meanwhile, our modified interleaver has relatively low BER as
the SINR decreases, e.g., below 10−5, which is good enough for IoT communications. The modified
interleaver even approaches the baseline when two transmission parties have equal transmission
power (SINR = 0 dB). Therefore, the modified interleaving is capable of supporting concurrent
transmission upon POC for IoT networks.

In the next step, we evaluate the performance of intelligent POC assignment. To make the evalu-
ation more convincing, we add impulsive noise to emulate the unexpected interference in practice.
We verify the effectiveness of intelligent POC assignment under three representative channel mod-
els. The channel responses are shown in Figure 6.

Figures 7–9 depict the system reward in terms of the training steps under different channel
conditions. It is not surprised that with lower SNR, the reward is higher with less POC weight, in-
dicating that when the channel condition is poor, it is better to transmit with less POC. As the SNR
grows, the reward is higher with more POC weight, which means we can use more POC for con-
current transmissions when the channel condition is good. Under all circumstance, IO traces the
best curve after a certain step, which demonstrates that the proposed DQN-based POC assignment
strategy is able to learn the optimal POC weight given certain channel information.

Figure 10 shows the bandwidth efficiency performance for data subcarriers under different SNRs
using DQN-based approach, non-overlapping, fixed 1/8-overlapping, and fixed 1/4-overlapping
methods. We assume that two end devices transmit data at the same time with different overlap-
ping ratios. It is shown that the proposed DQN-based approach achieves best performance over
the other ones under the same SNRs, and the bandwidth efficiency gets higher as SNR increases.
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Fig. 8. The performance of different POC assignment strategies under channel 2. IO always learns and traces

the best curve.

The reason lies in the ability for BS of predicting the channel variation and choosing the optimal
overlapping ratio to maximize the channel utilization. When the channel condition is bad, DQN-
based approach gives a low overlapping ratio to make sure the data from a single end device can
be resumed. As the channel condition gets better, DQN can output a higher overlapping ratio to
fully utilize the bandwidth. In addition, as SNR increases, the non-overlapping and fixed overlap-
ping methods reach to maxima, while DQN can learn a higher overlapping ratio to increase the
bandwidth efficiency.

5.2 Validation of Channel Prediction

In this subsection, we validate the training effect of the channel prediction. As shown in Table 1,
we choose the loss function of MSE, and the channel is modeled as Racian Fading channel with
Jake’s Doppler spectrum. The max doppler shift is 20Hz. We collect 20,000 CSIs from the Rician
fading channel model, and use a regression model with two bidirectional LSTM layers and three
full-connection layers to predict the channel states. At each time slot, the CSIs of all the end devices
are stored. We use 10 continuous time slots CSI as the input to predict the CSI of the next time slot.
In particular, 80% of the data is allocated for training and the remaining 20% is as validation data.

Figure 11 depicts the training loss against the iteration steps. It is shown that the loss value
decreases rapidly as the training steps increase, indicating that the channel prediction becomes
stable and converges after certain steps (e.g., 150 steps). It is seen that our proposed approach can
predict CSI at the next time slot and give a proper overlapping ratio. For instance, at the time slot
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Fig. 9. The performance of different POC assignment strategies under channel 3. IO always learns and traces

the best curve.

Fig. 10. Performance comparison for bandwidth efficiency performance for data subcarriers in terms of

SNRs.

28, channel prediction obtains the estimated CSI at the time slot 29. Based on CP, we predict the
overlapping ratio at the next transmission.

Figure 12 compares the performance of bandwidth efficiency under the situations of CP and
without CP. It is shown that our DQN-based approach with CP can achieve significant gain over
the approach using CSI at the current time slot. From the time slot 33 to 34, the channel condition
changes from 30 to 25 dB. When generating data package using the overlapping ratio learned from
the channel condition at the time slot 33, it cannot be successfully reconstructed under a worse
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Fig. 11. Training effect of channel prediction in terms of iteration steps.

Fig. 12. Bandwidth efficiency with and without channel prediction.

channel condition at the time slot 34. Therefore, the bandwidth efficiency becomes very low and
a big gap occurs between DQN-base approach with CP and without CP.

5.3 Complexity Discussion

Our proposed Intelligent Overlapping tries to make little change to the PHY layer, which only
requires modification to the interleaver at the end devices and the gateway. The learning and pre-
diction process is also designed with low complexity for LoRaWAN. In this part, we use Multiply

Accumulate Operations (Mac) and floating-point operations (FLOPs) to measure the com-
plexity. Mac is a common step that computes the product of two numbers and adds that product
to an accumulator. While a flop serves as a basic unit of computation, which could denote one
addition, subtraction, multiplication or division of floating point numbers. According to the sim-
ulation results, the computational complexity of channel prediction is 64.24K Mac with 32.12K
FLOPs, and the POC assignment learning is 19.62 K Mac with 9.81K FLOPs. As shown in Table 2,
comprising with the state-of-the-art machine learning models (such as ResNet), which has G Mac
level computations, our proposed channel access methods is suitable for LoRaWAN.

6 CONCLUSION AND FUTURE DIRECTIONS

In this article, we have discussed the potential of using POC for occurrent spectrum access in
LoRaWAN, and we investigated design challenges and principles. We have presented a novel
deep-learning-based concurrent spectrum access architecture upon POC, termed IO, which au-
tomatically learns the extra coding redundancy from the data on the non-overlapping spec-
trum and applies such redundancy to recover the data on the overlapping spectrum. We have
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Table 2. Computational Complexity

System

Component

Model Params Macs FLOPs

Channel Prediction BiLSTM 17.95K 64.24K 32.12K

POC Assignment DQN 3.94K 19.62K 9.81K

Comparison ResNet18 11.69M 1.82G —

Comparison ResNet50 25.56M 4.12G —

presented a system-level case study as an illustrated architecture at both the PHY layer and
Media Access Control (MAC) layer. We have demonstrated the high performance of the proposed
scheme. We believe that the envisioned spectrum sharing architecture facilitate the spectrum us-
age efficiency in LoRaWAN.

To fully unleash the potential of POC for spectrum sharing, there still exists a bundle of future
directions. One primary concern is the energy consumption of IoT devices, which calls for novel de-
signs with a low computational overhead. What is more, multi-user selection needs to be carefully
designed to guarantee the service quality. Last, a complete network structure with such spectrum
sharing capability is essential for LoRaWAN, including computation offloading, spectrum slicing,
and so on.
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