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Abstract—Rate adaptation is an essential component in today’s
wireless standards, which help approach the channel capacity and
maximize the throughput. However, how to estimate the opti-
mal data rate in a fluctuated channel remains of great concern.
Previous wisdoms leverage PHY layer information for rate esti-
mation, including confidence information like SoftPHY hints, and
channel state information (CSI) measurements. However, when
experiencing rapid time varying and frequency selective fading
channel, the above metrics can be inaccurate. The reason roots
from the fact that there are not enough cost-efficient pilots, which
are pre-known symbols inserted in a packet for channel estima-
tion. In this paper, we observe that by digging into both PHY
layer decoder and upper layer protocol headers, more reliable data
bits with high confidence level can be exploited. These data bits,
termed smart pilot, can be used to calibrate the channel estimation
measurements cost-efficiently. Based on the calibrated estimation,
we further propose a novel greedy rate selection algorithm to
track the optimal data rate, which successfully avoids the impact
of deep fading subcarriers in both legacy 802.11a/g and 802.11n
MIMO systems. Our experiments on GNU radio testbed show that
SmartPilot quickly tracks the link variance, and improve the chan-
nel estimation accuracy by 87%. Furthermore, the trace driven
simulation reveals that greedy rate selection algorithm predicts
the data rate as good as the optimal rate adaptation algorithms
for 802.11 standards.

Index Terms—Rate Adaptation, Channel Estimation, Smart
Pilot, Protocol Header.

I. INTRODUCTION

N OWADAYS, wireless local area networks (WLANs) are
facing great challenges to meet the increasing user

demands for high speed communications. The latest 802.11

Manuscript received September 6, 2014; revised June 7, 2015 and December
9, 2015; accepted February 27, 2016. Date of publication March 16, 2016; date
of current version July 8, 2016. This work was supported in part by grants from
China NSFC under Grant 61502313 and Grant 61472259, in part by Shenzhen
Science and Technology Foundation under Grant JCYJ20150324141711621
and Grant KQCX20150324160536457, in part by Guangdong Young Talent
Project under Grant 2014TQ01X238, in part by the 973 project under
Grant 2013CB3296006, in part by the RGC under the contracts CERG
MHKUST609/13, 622613, 16212714, and 16203215, and in part by the Qatar
National Research Fund under Grant NPRP 6-718-2-298. The associate edi-
tor coordinating the review of this paper and approving it for publication was
S. Valaee.

L. Wang and K. Wu are with College of Computer Science and
Software Engineering, Shenzhen Univeirsty, Shenzhen 518060, China (e-mail:
wanglu@szu.edu.cn; wu@szu.edu.cn).

X. Qi is with the Institute of Acoustics, Chinese Academy of Sciences,
Beijing, China (e-mail: xiaoke.qi@nlpr.ia.ac.cn).

J. Xiao and Q. Zhang are with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology, Kowloon 852,
Hong Kong (e-mail: jiangxiao@cse.ust.hk; qianzh@cse.ust.hk).

M. Hamdi is with the College of Science and Engineering, Hamad Bin
Khalifa University, Doha, Qatar (e-mail: mhamdi@qf.org.qa).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2016.2542807

standards offer date rates ranging from 6Mbps to 600Mbps
through combinations of modulation, coding and spatial
streams [1]. Accordingly, rate adaptation protocols are adopted
to dynamically adjust the data rate on the basis of the chan-
nel quality. However, wireless links often experience a variety
of impairments. These impairments add noise, introduce bit
errors, or otherwise distort the transmitted signal, and thus make
the wireless links extremely unstable both in time domain and
frequency domain [2]. This instability brings in a great chal-
lenge to rate adaptation design. How to predict such a fluctuated
channel and estimate the optimal rate remains an open topic.

The state-of-the-art research primarily focuses on two kinds
of metrics for rate adaptation: packet loss rate (PLR) and signal
to noise ratio (SNR)- bit error rate (BER). SampleRate [3] and
RRAA [4] are two representatives of loss-triggered rate adapta-
tion, which rely on PLR to infer the channel condition. The PLR
is calculated by tens or hundreds of frame transmissions, mak-
ing it not responsive to channel variance. Instead of operating
on frame-level, SoftRate [5] utilizes SoftPHY hints to obtain
per-packet BER. These hints are the per-bit confidences com-
puted in the decoding decision. Thus, the good bit rates can
be chosen on per-packet basis, which is more adaptive to the
rapidly time-varying channel. Another short timescale metric is
SNR retrieved on each packet reception [6], and is commonly
measured by the received signal strength indication (RSSI). Yet
RSSI is known to be coarse and insufficient, especially in fre-
quency selective fading channel. To better reflect the channel
variation in frequency domain, effective SNR (ESNR) is pro-
posed in [7], which is an estimation of channel state information
(CSI). ESNR serves as a promising metric for rate adaptation,
since it takes frequency diversity into consideration. However,
complete CSI information is costly to obtain and store. Instead
of fine-grained CSI, current 802.11n devices support coarse-
grained CSI that is computed on a per-packet basis. Thus, there
is a certain gap between ESNR and the real CSI.

The origin of failure to track the optimal data rate falls into
two aspects. The first one is inaccurate channel estimation,
which directly links to the inappropriate rate selection choice.
Current rate adaptation protocols are not capable of obtain-
ing the accurate channel status. The fundamental reason lies
in the fact that the information they acquire for channel estima-
tion is limited. In today’s 802.11 standards, only preamble and
a few inserted pilot symbols are utilized for channel estima-
tion in each frame. There always leaves a measurement error
that cannot be truly removed. To quantify the channel esti-
mation error, we conduct experiments using a simple USRP2
transmitter-receiver node topology. We compute the CSI based
on the received known PN sequences as the real channel stat-
ues. Fig. 1 illustrates the estimation error calculated as the Mean
Square Error (MSE) between the real channel and the channel
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Fig. 1. Channel estimation error using 802.11 preambles, which keeps us away
from idea date rate.

measured with 802.11 preamble. This difference keeps us away
from tracking the ideal rate. Inserting extra pilots may be a
solution, yet it incurs extra control overhead and decreases the
effective data rate. We will discuss it later in detail in Sec. III.
The second aspect lies in the inability to determine the opti-
mal data rate under frequency diversity. None of the existing
metrics, including ESNR and BER, have differentiated the sub-
carrier impact in legacy 802.11a/g and 802.11n MIMO systems.
When some subcarriers experience deep fading, the state-of-
the-art will conservatively select a lower data rate to ensure
transmissions on all subcarriers. However, the subcarriers with-
out fading lose the opportunity to transmit at a higher data rate
that may yield higher throughput. Adaptive modulation and
coding with per-subcarrier data rate could solve the problem,
yet it complicates the system. Thus researchers still put more
efforts on single data rate adaptation.

Motivated by the above observations, we present SmartPilot,
a wireless rate adaptation protocol that exploits potential pilots
across multiple layers to track the channel variance, and selects
the optimal data rate in both legacy 802.11a/g and 802.11n
MIMO systems. The SmartPilot design stems from two facts.
First, at PHY layer, the decoded bits with relatively high confi-
dence level are regarded reliable. They can be selected as pilots
to help alleviate the channel estimation error and approach the
real channel status. Second, in 802.11 protocol headers, there
are a great number of fields that have fixed values within a
certain link [8]. These fields can be harnessed as pilots to fur-
ther improve the channel estimation. We term the former pilots
as Soft Pilots, and the latter ones as Hard Pilots. These smart
pilots serve as a built-in strategy to calibrate the channel esti-
mation measurements, say CSI, and better approach the real
channel status cost-efficiently. With the calibrated CSI(CCSI),
we propose a novel rate selection algorithm termed greedy rate
selection (GRS). Unlike the previous methods that weight all
the subcarriers as equal for rate selection, GRS differentiates
the subcarriers with deep fading, and chooses those with bet-
ter channel quality to calculate a single optimal data rate. GRS
successfully avoids the weaker subcarriers to drag down the
data rate to a lower level, and provides more opportunities for
stronger subcarriers.

We have implemented SmartPilot protocol in a GNU Radio
testbed. Experiments with our software radio prototype verify

that SmartPilot can alleviate the channel estimation error by
87% in a cost efficient way. We also conduct trace-driven sim-
ulations to evaluate the greedy rate selection over SmartPilot.
The results demonstrate that it improves the throughput 1.9×
and 1.8× compared with SoftRate and ESNR in 802.11a/g
systems, and 1.3× compared with MiRA in 802.11n MIMO
systems. The performance gain stems from SmartPilot’s ability
to quickly track the channel variance, and predict the optimal
data rate against multi-path effect. In summary, the main contri-
butions of this paper over the existing rate adaptation protocols
are as follows:

• We propose SmartPilot to alleviate the channel estimation
error. To the best of our knowledge, this is the first work
to exploit decoding data and header bits as pilots to obtain
more accurate channel status.

• We present a novel greedy rate selection algorithm based
on calibrated channel estimation. The proposed algorithm
differentiates the impact of the weaker subcarriers, and
leverages more stronger subcarriers for rate selection to
maximize the overall throughput.

• We implement SmartPilot on a GNU Radio testbed.
Experimental results verify that SmartPilot reduces the
channel estimation error by 87%. We also conduct trace-
driven simulations to demonstrate the effectiveness of
greedy rate selection algorithm in both legacy 802.11a/g
and 802.11n MIMO systems.

II. RELATED WORK

The existing wisdoms of rate adaption adjust the data rates
according to a certain metric. In SampleRate [3] and RRAA
[4], packet loss rate (PLR) is used at the sender side to infer
the channel condition. Since FRR is calculated by tens or hun-
dreds of frame transmissions, these two approaches are not
so responsive to channel variance. CARA [9] further inter-
grades 802.11 built-in functionalities to differentiate collisions
from rate adaptation malfunction, such as RTS/CTS and Clear
Channel Assessment (CCA). Although it is more likely to make
rate adaptation decisions, the metric is still irresponsive. On the
other hand, SoftRate [5] utilizes SoftPHY hints to obtain per-
packet BER, and conducts rate adaptation on packet level. BER
is much more adaptive to the rapidly varying channel, yet it has
certain drawbacks, e.g., when BER = 0, it is difficult to deter-
mine to which level we should increase the data rate. On the
otherhand, SmartPilot utilizes calibrated CSI for rate selection
to avoid the drawbacks. Also, unlike SoftRate that leverages all
the data bits to compute BER, SmartPilot discovers and only
leverages the data bits that are proved to be reliable. Thus, it is
more accurate and can better track the channel quality.

Another short timescale metric is SNR measured through
RSSI on each packet reception. FARA [10] is the first work
that puts forward frequency diversity in rate adaptation. It com-
putes per-frequency SNR as the adaptation metric. Even so,
SNR obtained from RSSI is known to be coarse and insuffi-
cient, especially in frequency selective fading channel. To better
reflect the channel variation, ESNR [7] proposes effective SNR
computed by CSI for rate adaptation, which takes frequency
diversity into consideration. AccuRate [11] also leverages PHY
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layer information to improve the accuracy of rate selection.
Even so, all the previous methods fail to track the optimal
data rate, since the information they acquire for rate estimation
is not sufficient enough. Also, the rate selection mechanisms
do not take frequency diversity into consideration. SmartPilot,
which has been initiated in our previous work [12], exploits
more pilots to track the link variance with minimum over-
head. The subcarrier quality is also differentiated for better rate
selection. In this paper, we further investigate SmartPilot under
more scenarios, and talk about the critical issues when applying
SmartPilot in practise.

More recently, the prevailing of IEEE 802.11n has motivated
researchers to develop rate adaptation MIMO systems [13]. As
multiplexing and diversity are used in MIMO systems, 802.11n
provides a wide range of rate configurations with the increas-
ing number of the antennas. Therefore, rate adaptation becomes
more challenging. MiRA [14] is the first work to observe that
rate adaptation should exploit the inherent MIMO character-
istics. Thus, it proposes an interesting ZigZag search among
different MIMO modes to find the rate to optimize throughput.
RAMAS [15] categorizes all the rate configurations into two
groups, and adapts these two groups concurrently. ARAMIS
[16] indicates that the best metric for MIMO rate adaptation
is to use 802.11ns Channel State Information (CSI). However,
it cannot obtain the accurate CSI, and thus proposes a practi-
cal link metric based on RSSI. Unlike the previous methods,
SmartPilot has the build-in mechanism to calibrate CSI and
obtain more accurate channel estimation measurement, and thus
provide more opportunities for MIMO rate adaptation.

III. CHANNEL ESTIMATION ERROR

Before we jump into the detailed design of SmartPilot, we
first introduce the idea of channel estimation error, which is
considered as the primary obstacle in rate adaptation. Due to
time-varying and frequency selective fading, the transmitted
signal is distorted. The existing 802.11 standards estimate the
channel response from preamble, and compensate its effect
for each subcarrier in one OFDM symbol [7]. Specifically,
two identical pseudo-noise (PN) sequences are designated as
preamble, each denoted as x with length Nd . Assuming y1

0 and
y2

0 are the received sequences of the preamble, and then they
can be expressed as,

y1
0(p) = h(p)x(p) + n1

0(p), (1)

y2
0(p) = h(p)x(p) + n2

0(p), p = 1, . . . , Nd ,

where n1
0 and n2

0 are the Gaussian random variables with
variance σ 2

n .
To acquire the channel response ĥ, Least square (LS) estima-

tion algorithm is adopted,

ĥ0(p) = y1
0(p) + y2

0(p)

2x(p)
= h(p) + n′(p), (2)

where n′(p) = (n1
0(p) + n2

0(p))/2. Therefore, the variance is
calculated as,

σ 2
n′ = E

{
n′(p)2

}
= 1

4
E
{
(n1

0(p) + n2
0(p))2

}
= σ 2

n

2
. (3)

Channel estimation error is the difference between the esti-
mated channel status and the ground truth. We define it as
E{||ĥ − h||2}, where ĥ and h denote the estimated chan-
nel response and ground truth channel response, respectively.
Therefore, it can be measured as,

mse0 = E{||ĥ0 − h||2} (4)

= 1

Nd

Nd∑
p=1

|ĥ(p) − h(p)|2 = σ 2
n /2.

Equation (4) aligns with the simulation results in Fig. 1.
When SNR is low, the channel estimation error becomes severe,
and amplifies the gap between real channel status and the
estimated channel status. Since reliable channel estimation pro-
vides appropriate metric for rate selection, minimizing the
channel estimation error will definitely improve the perfor-
mance of rate adaptation protocols.

IV. SMARTPILOT DESIGN

In this section, we describe the overall architecture of
SmartPilot. SmartPilot is compatible with the existing error
correcting codes and error recovery schemes. By exploiting as
many pilots as possible to approach the real channel status, it
aims at selecting the optimal data rate against multipath effect.

A. Overview and Design Challenge

Unlike the previous rate adaptation protocols that treat PSDU
(PLCP Service Data Unit) as transparent, SmartPilot investi-
gates the reliable data bits in PSDU as pilots to calibrate the CSI
and approach the real channel status. To be specific, SmartPilot
exploits two kinds of data bits as pilots. First, from PHY layer
decoder, some data bits have relatively high confidence lev-
els. These data bits can be considered reliable and selected as
known pilots after decoding. We call them soft pilots since they
are extracted using softPHY hints. Second, 802.11 PDSU car-
ries numerous upper layer protocol headers, e.g., MAC header,
logical link header, network header, etc. Some fields in these
headers often have fixed bit values within a certain link, such as
the source and destination MAC addresses, and service types.
These bits could be extracted as hard pilots, and leveraged for
accurate channel estimation.

The fundamental idea of SmartPilot is: to exploit as many
pilots as possible from transparent data unit, and harness them
to estimate the data rate that yields the maximum throughput.
The basic idea seems simple and efficient, yet there remains
several challenges for implementation. First, how to utilize
SoftPHY hints to choose the proper soft pilots remains a great
challenge. As we try to extract as many pilots as possible, there
always exists a tradeoff between quantity and quality. Second,
unlike soft pilots that naturally spread within a frame across
all the subcarriers, hard pilots are mainly located in protocol
headers. They may have limited contribution to estimate the
entire channel, and need to be carefully spread out within a
transmission. Third, after we obtain smart pilots and use them
to calibrate the CSI, how to choose the optimal data rate in a
frequency selective fading channel remains a great concern.
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Fig. 2. The block diagrams of SmartPilot sender and receiver. Four important
components are included: a) Soft Pilot Extractor, b) Hard Pilot Extractor, c) CSI
Calibration, and d) Greedy Rate Selection.

As shown in Fig. 2, SmartPilot has four components to
address the above challenges: Soft Pilot Extractor that selects
soft pilots from PHY layer encoder with guaranteed reliabil-
ity, Hard Pilot Extractor that extracts hard pilots from the
upper layer protocol in a cost efficient way, CSI Calibration
that utilizes smart pilots to approach the real channel status,
and Greedy Rate Selection that leverages CCSI to compute the
highest available date rate in both legacy 802.11a/g and 802.11n
MIMO system. The sender first rearranges the messages from
upper layer, and then transmits them into air. Upon receiving
the data messages, the receiver first extracts hard pilots and soft
pilots and store them into the buffer. The pilots are used for
CSI calibration, which later feedback to the sender to select the
optimal data rate for transmission.

B. Smart Pilot Extraction

1) Soft Pilot Extraction: Soft pilots are the decoded bits
extracted from PHY layer decoder using SoftPHY hints, e.g.,
posteriori Log-Likelihood Ratios (LLRs) [17]. LLR represents
the confidence level of a decoded bit. Intuitively speaking,
whenever a bit has high LLR, it has high probability to be cor-
rectly decoded. Therefore, LLR gives us an insight to extract
decoded bits as soft pilots. LLR can be obtained from the max-
imum likelihood (ML) or maximum a posteriori probability
(MAP) decoder [18]. We present LLR as L0 and calculate it
as,

L0(i) = 2yi

σ 2
, i = 1, . . . , N . (5)

where yi , i = 1, . . . , N is the output bits from the decoder and
σ 2 is the Gaussian noise variance.

One critical problem is how to ensure the reliability of
soft pilot extraction using LLRs. Due to channel impairments
such as noise variation, channel multipath, and collision, LLRs
could be objective and cannot represent the accurate bit confi-
dence level. The normalized confidence level (NCL), defined as

|L L R|
max(|L L R|) , is more subjective and can be used as the extraction
metric. To verify this point, we conduct simulations to inves-
tigate how NCL reflects the error probability of a decoded bit.
A sequences of bits are first coded and passed through a fading
channel. We then feed them into the decoder.

Fig. 3(a) depicts the relationship between NCL and error
probability distribution. The erroneous bits have relatively low

Fig. 3. The relationship between bit errors and NCL/LLR. (a) The error
probability distribution (b) BER estimation.

NCL, and the bits with higher NCL turn out to be always reli-
able. To be specific, when NCL is below 0.5, the decoded bits
have high probability to be erroneous. After NCL exceeds a
certain threshold, e.g., 0.8, the error probability quickly drop
to 0, indicating that the decoded bits are correct with no
errors. Thus, we use NCL as the soft pilot extract extraction
metric. According to SoftRate, the error probability has an
approximately exponential decay relationship with |L L R|. We
demonstrate this relationship in Fig. 3(b). When a decoded bit
has |L L R| value higher than 20, its BER is lower than 10−9,
which is small enough to be trusted.

We divided the decoding process into several loops. In
each loop, decoded bits with NC L ≥ 0.8 and |L L R| ≥ 20 are
extracted as soft pilots. These soft pilots are also regarded as
the known bits in the next loops to improve the decoding per-
formance. During pilot extraction, the pilot values are the hard
decisions of the outputs |L L R|. However, this method is likely
to extract erroneous bits. To avoid this situation, we make the
decision based on the decoding status. If the decoding is suc-
cessful, we choose the hard decisions from current loop as the
decoded bits. Otherwise, we choose the values from the previ-
ous loops as the decoded bits. That is because the extraction
for the first loops is always true, and decoded bits for differ-
ent loops are true in different positions. So if we average the
decoded bits, the errors can be suppressed. Our experiments in
Sec. V-A prove its efficiency.

2) Hard Pilot Extraction: Different upper layer protocols
have various packet semantics. Since hard pilots exhibit quite
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distinct features and highly depend on data traffic types, it is
not practical for the sender to inform the exact pilot locations to
the receiver. To simplify the design and minimize the overhead,
we leverage the idea of bit bias to conduct pilot extraction at
the receiver side. Bit bias is the high probability that a bit takes
value of 0 or 1 [8]. Assume a window of packet Tm,n has m
packet, each with n bits in a certain link,

Tm,n =
⎡
⎢⎣

b1,1 · · · b1,n
...

. . .
...

bm,1 · · · bm,n

⎤
⎥⎦ , (6)

the bit bias βi (Tm,n) of bit i can be computed as:

βi (Tm,n) = 2 ×
∣∣∣∣
∑m

k=1 bk,i

m
− 1

2

∣∣∣∣ (7)

where m is history size of the received packets, and n is the
header length. bi, j defines the bit value of the i th bit in the
j th packet. If bit i is fixed to the value 0 or 1 within m pack-
ets, βi (Tm,n) = 1, and then it will be selected as hard pilot and
stored in a hard-pilot buffer for this link. Otherwise, βi (Tm,n) =
0. The receiver will keep sniffing the received packets at the
running time, and compute the bit bias for each bit located in
the first 80 bytes of a packet, which include all protocol headers
from MAC layer to the transport layer.

During each transmission, the receiver first updates the hard-
pilot buffer before using them to calibrate CSI. It is possible that
the extracted pilots do not match the actual received bits. To
avoid this pilot misprediction and and guarantee the accuracy
of the pilots, we also include two CRC4 block checksum for
the first and last half the header length. Specifically, the update
procedure follows two principles:

1) Principle 1: If a block checksum succeeds, the receiver
recomputes the bias value βi (Ti,n) for each bit i .

a) If βi (Ti,n) = 1, bit i will be stored in hard-pilot
buffer.

b) If βi (Ti,n) < 1, bit i will be removed from the
buffer.

2) Principle 2: If a block checksum fails, LLR is used to
examine the reliability of each bit.

a) If the confidence level of bit i exceeds threshold
σ , then this bit is considered reliable. The receiver
follows principle 1a and 1b for pilot update.

b) Otherwise, if |L L R(i)| < σ , bit i will be removed
from the buffer if already stored.

As we mentioned before, the hard pilots are extracted from
the protocol headers, e.g., within the first 80 bytes of the pack-
ets. Therefore, they are not capable of tracking the channel
variation of the whole packet. To make them useful, we propose
two interleavers at the sender side: MAC block interleaver and
PHY symbol interleaver. MAC interleaver aims to distribute the
header bits evenly within the entire Message Protocol Data Unit
(MPDU). It divides the header of MPDU into several blocks,
and inserts each into a subsequent data block that divided by
the encoder (e.g., LDPC encoder). In this way, we can ensure
that each coded block has at least one header block after PHY
encoding. As illustrated in Fig. 4, the header and data units

Fig. 4. Illustration of MAC layer block interleaver, from MAC MPDU to PHY
layer coded message.

Fig. 5. Illustration of PHY layer symbol interleaver, which operates on the
PHY layer coded message.

in MPDU have been divided into three blocks respectively.
The row-column interleaver assigns each data block with a
header block, and feed them into PHY layer block encoder
for further operation. Meanwhile, PHY symbol interleaver is
a random interleaver that conducted after symbol mapping. As
shown in Fig. 5, it spreads the modulated symbols from header
bits to all OFDM symbols uniformly. Since channel estimation
is based on symbol-level instead of bit-level, our PHY sym-
bol interleaver distributes the pilot symbols within the entire
packet.

When a receiver extracts hard pilots from the buffer, it can-
not directly used them for channel estimation on the received
packet. That is because the bit values of a packet may
appear random after encryption and scrambling. Decryption
and descrambling the received packet is not practical. To
address this issue, upon receiving a packet, the receiver first
extracts the hard pilots from the buffer, and then executes the
same encryption and scrambling algorithm as the sender. The
execution guarantees that the hard pilots directly match the
received packet at PHY layer, and ensures that SmartPilot is
independent from the underlying encryption and scrambling
algorithms. The encryption and scrambling algorithm can be
exchanged between sender and receiver in advance.

C. CSI Calibration

CSI calibration utilizes the hard and soft pilots to alleviate
the channel estimation error, and thus improves the channel
estimation accuracy. Specifically, the estimation obtained from
the above pilots is used to calibrate the initial estimation from
the preamble. Assume the extracted pilots have a position set
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Sk in the kth OFDM symbol. A pilot at the pth subcarrier has
transmitted value xk(p) and received value yk(p),

yk(p) = h(p)xk(p) + nk(p). (8)

With the assist of pilots, the LS channel estimation for the kth

OFDM symbol is obtained as:

ĥk(p) = yk(p)

xk(p)
= h(p) + nk(p), p ∈ Sk, k = 1, . . . , N . (9)

The channel estimation is calibrated by weighting the previous
and current estimation as,

h̃k(p) =
{

αk(p)h̃k−1(p) + (1 − αk(p))ĥk(p), for p ∈ Sk,

h̃k−1(p), otherwise.

(10)

where αk(p) is the weight, and h̃0(p) = ĥ0(p). Thus, the
estimation error after calibration is,

msek(p) = E{||h̃k(p) − h(p)||2}, (11)

and we choose the optimal weight by minimizing the channel
estimation error for each subcarrier,

αk,opt (p) = argmin
αk (p)

msek(p). (12)

To derive the optimal weight, we assume there is Sk
p pilots at the

pth subcarrier in k OFDM symbols, and P contains the index
of OFDM symbols with Sk

p pilots. With the same noise variance

σ 2
n /2, the minimum mse is obtained when assuming the chan-

nel estimation has the same accuracy. Therefore, Equation (9)
can be expressed as:

h̃k(p) =
⎧⎨
⎩βk(p)ĥ0(p) + 1−βk (p)

Sk
p

∑Sk
p

n=1 ĥ Pk (p), for Sk
p > 0

ĥ0(p), for Sk
p = 0.

where βk(p) is the combined weight, and is expressed as:

βk,opt (p) = argmin
βk (p)

msek(p) (13)

= argmin
βk (p)

βk(p)2σ 2
n′ + Sk

p

(
1 − βk(p)

Sk
p

)2

σ 2
n

= argmin
βk (p)

σ 2
n ·

((
1

2
+ 1

Sk
p

)
βk(p)2 − 2

Sk
p
βk(p) + 1

Sk
p

)
.

Equation (13) infers that the optimal weight can be eas-
ily obtained by finding the minimum point of the quadratic
function, which is expressed as:

βk,opt (p) = 2

Sk
p + 2

. (14)

Therefore, we have:

αk,opt (p) = 1 − 1 − βk,opt (p)

Sk
p

= Sk
p + 1

Sk
p + 2

. (15)

And the channel estimation error can be alleviated by:

msek(p) = Sk
p + 1

Sk
p(Sk

p + 2)
σ 2

n < σ 2
n′ . (16)

As the number of pilots increases, CSI becomes more reliable.
Furthermore, to simplify the implementation, an iterative cal-

ibrated method is derived. For the (k − 1)th OFDM symbols,
the optimal weighting is easily conducted using (15) as:

αk−1,opt (p) = Sk−1
p + 1

Sk−1
p + 2

. (17)

If there is a pilot at the pth subcarrier, e.g., Sk
p = Sk−1

p + 1, then
we have:

αk,opt (p) = Sk
p + 1

Sk
p + 2

= Sk−1
p + 2

Sk−1
p + 3

(18)

= 1

2 − αk−1,opt (p)
.

Therefore, combing (10) and (18), the iterative channel estima-
tion can be obtained. In this way, we can reduce the channel
estimation error and approach the real channel status.

D. Greedy Rate Selection

Greedy Rate Selection (GRS) is an essential component
in SmartPilot, because it directly links to the throughput.
Previous rate selection algorithms barely consider multipath
effect, where some subcarriers experience deep fading, and
have rather poor channel quality. When choosing the optimal
data rate for transmission, these weaker subcarriers will drag
the selected rate to a relatively low level, and ruin the oppor-
tunities for those stronger subcarriers to have higher rate for
transmission. In this subsection, we first present GRS design
for legacy 802.11a/g system. Then we extend the algorithm to
see how SmartPilot benefits the 802.11n MIMO system.

1) Rate Adaptation for SISO System: Here we follow the
constraint of a single modulation and coding scheme (MCS) per
client. The goal is to choose the optimal averaging data rate
Ropt that yields the highest throughput. To achieve this goal,
we first define that for subcarrier i , its affordable data rate ri

is the highest data rate at which a subcarrier can successfully
decode. According to [10], ri can be easily obtained trough
CC SIi based on the off-line training SNR-bitrate relationship.
Therefore, the averaging data rate Ri when transmitting with
ri is,

Ri = ni × ri

N
, (19)

where N is the total number of subcarriers, and ni is the number
of subcarriers that have affordable data rate greater or equal
to ri .

Our goal is to find out the optimal data rate Ropt by maxi-
mizing Ri , which is modeled as:

Ropt = max
{i=1,...,N }

Ri (20)

= max
{i=1,...,N }

ni × ri

N
.
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Fig. 6. The motivation of greedy rate selection. The left part depicts the stan-
dard SNR-bitrate mapping, and gives an example of a frequency selective
fading channel response. The right part is the corresponding averaged data rate
under different modulation and coding schemes (MCS).

A brute force method is to compute all the possible Ri and
select the largest one. However, it brings in high complexity in
time and space domain. To simply the design, we adopt a top-
down searching approach. We first classify the subcarriers with
the same affordable data rate ri into one groups ni , and sort all
the groups n = [n1, n2, · · · ] with r = [r1, r2, · · · ] in descend-
ing order. Then we start from the group with highest rate ri , and
compute R1 = n1 × r1/N , R2 = n2 × r2/N , etc. We compute
all the possible Ri and find out the maximum value. This value
will be set to Ropt , and will be fed back from the receiver to the
sender through acknowledgement.

In a frequency selective fading channel, e.g., some subcarri-
ers experience deep fading, greedy rate selection strategically
leaves them out of consideration, and chooses a much higher
rate than they can afford. One possible question is how we deal
with these deep fading subcarriers. To guarantee their transmis-
sion, we assign them the lowest data rate Rbsc (e.g., BPSK,
1/2, as preamble). Note that this is simple to achieve. After
Ropt computation, the receiver will record the subcarriers with
Ri < Ropt , and store their index into a table. This table is fed
back along with the rate selection choice Ropt to the sender [7].
Upon receiving the feedback, the sender first inquiries the table
and modulates the subcarriers with Rbsc. And then the rest of
the subcarriers are transmitted with Ropt . Unlike adaptive mod-
ulation schemes that have per subcarrier data rate [10], we only
differentiate the deep fading subcarriers, which simplifies the
system.

Fig. 6 presents the basic idea of greedy rate selection. The left
part denotes the channel quality for 64 subcarriers, while the
right part is the averaging data rate under different modulation
and coding schemes (MCS). The effective SNR is 11.2 dB, thus
ESNR chooses QPSK, 2/3 code rate as its transmission data
rate, which is 1.33 bits per symbol. On the contrary, Our GRS
chooses the highest averaging data rate, which is 16QAM,
2/3 code rate, resulting in a data rate of 1.72 bits per symbol.
Furthermore, the subcarriers with affordable data rate lower
than 16QAM, 2/3 is set to BPSK, 1/2 code rate. Thus the overall
data rate is further increased.

2) Rate Adaptation for MIMO System: SmartPilot provides
a more accurate estimation of the MIMO channel in a cost

efficient way. In this part, we demonstrate how CCSI can inform
rate adaptation in MIMO system. The rate selection strategy in
MIMO systems is more complex than SISO systems. One pri-
mary reason is that all paths undergo different fading. Besides,
MIMO system provides many choices apart from adapting
different modulation types, such as using spatial multiplex-
ing or transmit diversity, types of guard intervals, and channel
width. These configurations exhibits a non-monotonic relation-
ship with data rate. Thus, it is quite challenging to directly map
CSI to bitrate.

To benefit from CCSI in the MIMO systems, we incorpo-
rate CCSI with other information, such as Packet/Bit Error
Rate(PER/BER) [14]. To be specific, CCSI is used to obtain the
post-processed SNR (pp-SNR), which is the sub-carrier level
SNR after MIMO decoding. Afterwards, we estimate the loss
rate (BER) according to the pp-SNR, and use BER as the rate
adaptation metric. Essentially this is a BER based rate adapta-
tion algorithm. Yet with CCSI, the estimated BER can be more
accurate, and help us better track the ideal data rate. The rate
adaptation algorithm includes three steps:

• pp-SNR computation. After CCSI is obtained, the channel
on the kth subcarrier from the i th transmitting antenna to
j th receiving antenna is estimated as h̃(i, j)

k . Based on the
channel estimation, the pp-SNR, defined as the combina-
tion of the multiple receptions experienced by the symbol,
is calculated for each subcarrier. We adopt a Minimum
Mean Squared Error (MMSE) equalizer to compute the
processed signal on subcarrier k,

x̃k =
(

H̃ H
k H̃k + N0 I

)−1
H̃ H

k yk

= x̂ +
(

H̃ H
k H̃k + N0 I

)−1
H̃ H

k n, (21)

where H̃k denotes the channel matrix for the kth sub-
carrier, whose entry of i th row and j th column is h̃(i, j)

k .
Therefore, using a singular value decomposition (SVD),
the post-detection noise power is expressed as,

E

[
‖
(

H̃ H
k H̃k + N0 I

)−1
H̃ H

k n‖2
]

= E[‖(V �2V H + N0 I )−1V �2U H n‖2]

= E[‖(V (� + N0�
−1)−1U H n‖2]

= E[tr((V (� + N0�
−1)−1U H nnH U (� + N0�

−1))]

= N0 · tr
(
(� + N0�

−1)−2
)

. (22)

where H̃k = U H �V , � is a rectangular matrix, whose
diagonal elements are the singular values of the matrix
H̃k . tr(·) means the trace operation. As a result, the pp-
SNR on subcarrier k is calculated as,

SN Rk = Ek

Nt N0 · tr
(
(� + N0�−1)−2

) , (23)

where Nt is the number of transmit antennas. Ek is the
total transmission energy across Nt transmit antennas on
subcarrier k, and N0 is the noise power.
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• Error rate estimation. In this step, we obtain the coded
loss rate from pp-SNR. To be specific, the pp-SNR is
mapped to the uncoded BER using the well-known rela-
tionship between SNR and BER [19]. The coded BER in
LDPC decoder has not been properly solved. As a design
guide, we derive the coded BER in Viterbi decoder with
hard decision. Since the performance of LDPC decoder is
much better than Viterbi decoder, the derived coded BER
serve as an error-probability upper bound [20]. We define
p as the uncoded BER, and Pd as the probability of select-
ing a code word what is Hamming distance d from the
correct word. Then B E Rcoded(p) is,

B E Rcoded(p) =
∞∑

d=d f ree

ad Pd(p) (24)

When d is even,

Pd(p) =
d∑

i= d+1
2

(
d
i

)
pi (1 − p)d−i (25)

When d is odd,

Pd(p) = 1

2

(
d
d
2

)
p

d
2 (1 − p)

d
2 +

d∑
i= d+1

2

(
d
i

)
pi (1 − p)d−i

(26)

• Rate adaptation. Finally, we choose the optimal rate based
on the estimated coded BER. The rate selection algo-
rithm follows the basic rule of our greedy rate selection in
SISO system. Specifically, for MIMO system with mul-
tiple streams, all the possible transmission modes and
MCSs are measured based on the BER. The greedy rate
selection algorithm zigzags between intra- and inter-mode
rate options. Finally we choose a MCS that yields the
maximum delivery rate. For the weaker subcarriers that
cannot afford the chosen configuration, e.g., the chosen
rate is higher than its affordable rate, we simply use BPSK
1/2 to ensure the basic transmission.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of SmartPilot
through extensive experiments and simulations. Our
802.11a/g/n like PHY layer is built on top of OFDM modules
on GNU radio platform [21]. The universal software radio
peripheral 2 (USRP2) uses the RFX2450 daughterboard as RF
frontend, which operates in the 2.4-2.5GHZ range. Different
sets of USRP2 nodes were tested to verify the experiment.
Our idea of utilizing soft and hard pilots to calibrate CSI
is implemented on the GNU/USRP2 testbed by replaying
real-life packet traces in our office. Yet, the high latency
incurred in procuring RF samples from the USRP front-end
makes it impractical to evaluate the greedy rate selection
algorithm in real time [11]. Therefore, we conduct trace-driven
simulations by replaying SIGCOMM’08 trace [22] on our

Fig. 7. Experimental environment. 3 sets of nodes are distributed in different
locations.)

Fig. 8. The number of extracted hard pilot in the first 60 bytes from 3000
packets under different traffic.

interconnected simulator with C++ and Matlab, where the
traces were collected in WLANs of hundreds of users attending
the conferences. SoftRate [5], ESNR [7] and MiRA [14] are
selected as comparisons. Their simulations are also based on
the traces we have collected. Finally, we compare SmartPilot
with 802.11 standard in terms of optimal delivered rate.

A. Pilot Extractor

To begin with, we evaluate the performance of pilot extrac-
tor on our GNU Radio platform. Pilot extractor consists of two
components: hard pilot and soft pilot extraction. We replayed
the SIGCOMM’08 trace in our office, and collected the UDP
and TCP traffic for evaluation.

The hard pilots are extracted from the first 60 bytes of pack-
ets, which comprise of protocol headers up to transport layer.
Fig. 8 shows the number of hard pilots in the first 60 bytes in
3000 packets. The history size is set to 600, with the mispredic-
tion threshold of 0.005. The hard pilot remains a constantly high
quantity throughout the entire transmission. Specifically, the
UDP traffic has an average number of 420-bit hard pilots, which
is approximate 87% of the header bits (480 bits). In the mean-
while, the TCP traffic has bit less number of hard pilots. That
is because TCP header has more control fields that changed on
packet level. However, TCP’s hard pilot still yields about 410-
bit and 85% of the entire header bits. Therefore, hard pilots
from protocol headers are great help for CSI calibration.

When the misprediction rate exceeds 0.05, the extracted hard
pilots are not reliable. Specifically, the false positive ones pro-
vide opposite pilot information, and thus degrades the channel
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Fig. 9. False positive rate of hard pilots under multiple transmissions.

Fig. 10. The number of extracted soft pilot under different LLR thresholds.

estimation accuracy, especially when there are multiple incom-
ing packets from different senders. Fig. 9 plots the false positive
rate among the first 60bytes of the entire header. The results are
measured using 10000 packets collected on a WLAN down-
link. Only 11 hard pilots have false positive rate higher than
0.05. Compared with the total number of 440 hard pilots, the
false positive rate is negligible, which validates that with link
addressing and a proper extraction history size, the false posi-
tive rate can be reduced to less than 0.05, and thus ensure the
reliability of hard pilot extraction.

On the other hand, soft pilots are extracted from decoded
bits with high LLR values. The threshold has certain impact
on the resulting soft pilot. We demonstrate the false alarm rate
of extracted soft pilots in Fig. 10, as a function of LLR thresh-
olds. Not surprisingly, higher LLR threshold filters out more
unreliable bits, and results in a lower false alarm probability,
yet in the meanwhile it produces less soft pilots. To balance the
tradeoff between quantity and quality, we take 0.8 as a desirable
threshold.

B. Channel Estimation Error

After obtaining the smart pilots, we see how they work on
CSI calibration. In order to set a baseline, we trained the link
between two USRP nodes by transmitting known 50 long PN
sequences. The training sequences are used to compute the
CSI as the ground truth. Then we conduct normal data trans-
mission to extract smart pilots. We use least-square estimation
(LS) channel estimation algorithm to compute the original CSI,
and apply smart pilot for calibration .

Fig. 11. The channel estimation error between CSI - ground truth and CCSI -
ground truth.

Fig. 12. The subcarrier SNR comparison of ground truth, CSI and CCSI. BPSK
modulation, SNR=10 dB.

Fig. 13. The BER comparison between the standard 802.11, soft pilot and hard
pilot, 3/4 LDPC code rate.

Fig. 11 plots the channel estimation error of CSI and CCSI.
CCSI achieves at least 7 dB improvement over CSI across the
SNR range from 0 dB up to 35 dB. Furthermore, with higher
SNRs, CSI suffers from more critical noise enhancement. That
is because noise at the deep fading channel conditions has more
influence on channel estimation. On the contrary, calibrated
channel estimation is not affected by such influence. It verifies
that with the assistance of smart pilots, CCSI is more reliable
for rate adaptation.

Fig. 12 presents a comparison among the channel response
of ground truth, CSI and CCSI. We use BPSK modulation,
and the SNR is around 10 dB. Compared with CSI, CCSI is
more approaching to the ground truth. These results verify that
SmartPilot can effectively reduce the channel estimation error,
and approach the real channel statues.
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Fig. 14. Rate selection comparison under time-varying channel. (a) SoftRate (b) ESNR (c) MiRA.

C. Greedy Rate Selection

Due to the latency constraint of USRP2, we are not allowed
to conduct the real time evaluation for rate adaptation protocols.
Therefore, we conduct trace-driven simulations to evaluate the
performance of smart pilot. We replayed the SIGCOMM’08
trace in our office, and collected all the data traffic for sim-
ulation. SampleRate SoftRate and ESNR are chosen as three
comparisons.

1) BER Performance: Besides rate estimation, smart pilots
can also be leveraged to improve the decoding performance.
Thus we first compare the BER performance among the stan-
dard 802.11, soft pilot and hard pilot. All available modulation
schemes with 3/4 LDPC code rate are implemented. As shown
in Fig. 13, hard pilot method has the best BER performance. It
can correct bit errors even in deep fading. On the other hand,
since only the reliable LLRs are utilized for decoding, the per-
formance of soft pilot has about 0.5 dB less than hard pilot.
Moreover, the hard pilot and soft pilot methods are about 1.7 dB
and 1.2 dB better than the other one, respectively. Furthermore,
more improvement is observed for 64QAM modulation, which
has about 4.3 dB and 3.3 dB SNR gains for hard pilot and soft
pilot. At the SNR of 8 dB and BPSK modulation, soft pilot and
hard pilot respectively decrease 85% and 98% errors. It infers
that SmartPilot is also powerful to reduce BER.

2) SmartPilot Rate Adaptation: In this step, we compare
the performance of rate adaptation among SmartPilot, SoftRate,
ESNR and MIRA over the traces we gathered through USRP.
As shown in Fig. 14, the chosen rate is the one computed
through rate adaptation metric, where is the estimated BER
in SoftRate, effective SNR in ESNR and the Sub-Frame Error
Rate in MiRA. As for SmartPilot, two metrics are evaluated,
ground truth information and calibrated CSI. The achieved rate
is the average data rate for all the packets, which is computed
from the transmitted error-free packets. Whenever B E R > 0,
we set the achieved rate to 0.

We compare the performance of SmartPilot with SoftRate,
ESNR and MiRA. As shown in Fig. 14, the chosen rates are not
satisfactory in all the above three protocols. ESNR outperforms
SoftRate in SISO systems, which traces the chosen rate pretty
well in fast time varying channel with a rate of 2 bits per sym-
bol. Yet it still cannot catch up with SmartPilot since it cannot
reduce the channel estimation error. As for SoftRate, it exhibits

very irresponsive reaction, and only achieves a rate of 1.9 bits
per symbol due to deep fading subcarriers. In MIMO systems,
MiRA achieves a rate of 3.1 bits per symbol, indicating that its
zigzag rate probing exploring the inherent MIMO characteris-
tics among different modes. However, the upward rate probing
makes is quite unstable to converge an optimal rate. We dig
into the detail of these protocols and find out that, the reason
for their poor behavior results from the incorrect channel esti-
mation. They are likely to generate the estimated error and thus
move on to an incorrect rate.

3) Optimal Data Rate: Finally, we evaluate the perfor-
mance of SmartPilot in terms of optimal data rate compared the
legacy 802.11a/g SISO systems and 802.11n MIMO systems.
The optimal data rate is the envelope of all 802.11 available
rates. It can be easily obtained by measuring with a fixed
configuration.

We first evaluate the performance of SmartPilot over a
approximate AWGN channel. This is obtained by replying the
traces using transmitter-receiver pair P1 in Fig. 7. The close
distance ensures that white noise follows Gaussian distribu-
tion, and the energy spreads across the entire channel. The
transmitter transmits 10min packets for every rate. The receiver
calculates the achieved data rate of each available modulation
and code type, and choose the envelope as the optimal data
rate. We gauge the achieved data rate of SmartPilot and legacy
802.11a/g SISO system in Fig. 15(a). It is seen that SmartPilot
has a better performance than the legacy 802.11a/g when tak-
ing advantages of pilots, and obtains a much higher rate over
the entire SNR range. It outperforms 802.11 by 56% (-5 dB to
5 dB), 25% (5 dB to 15 dB) and 5% (above 15 dB) achieved data
rate. These gains are benefited from hard pilot and soft pilot
in LDPC decoder since there is no channel effect over AWGN
channel.

Fig. 15(b) demonstrates a performance comparison between
SmartPilot and legacy 802.11a/g SISO systems over frequency
selective channels. This is obtained by replying the traces using
transmitter-receiver pair P2 and P3 in Fig. 7. The results shows
that SmartPilot greatly outperforms legacy 802.11 and reaches
error-free transmission even at lower SNRs, e.g., 3 dB for BPSK
modulation and 1/2 code rate. At the lower SNRs, i.e., less than
5 dB, SmartPilot can achieve data rate 39.5 times than 802.11.
That is because the rate is unavailable for 802.11 at the low
SNRs, while SmartPilot can successfully recover the message
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Fig. 15. Rate achieved by SmartPilot and the standard 802.11 standards (a) SISO systems in approximate AWGN channel (b) SISO systems in frequency selective
channel (c) MIMO systems in frequency selective channel.

with the aid of pilots, and thus achieves 1.7×, 1.3× and 1.06×
performance gains over 802.11 at the range of 5 to 15 dB, 15 to
25 dB and above 25 dB, are obtained by SmartPilot.

Finally, we compare the performance of SmartPilot and
802.11n MIMO systems over frequency selective channels. The
traces are also obtained by replying the traces using transmitter-
receiver pair P2 and P3 in Fig. 7. We compute the rate achieved
per stream as the comparison metric. The results in Fig. 15(c)
shows that SmartPilot still outperforms 802.11n under all SNR
ranges. To be specific, SmartPilot performs much better under
low SNR ranges, e.g, below 15 dB. The performance gain over
802.11n indicates that with more accurate channel estimation,
the rate adaptation algorithm can achieve a better performance.

VI. CONCLUSION

In this paper, we propose a novel rate adaptation protocol
termed SmartPilot. It aims at exploiting the potential data bits
in PHY layer decoder and upper layer protocol header for rate
adaptation. We first identify the problem in the existing rate
adaptation protocols, that is, the lack of sufficient information
to alleviate the channel estimation error. By investigating soft
and hard pilots for channel estimation, SmartPilot can calibrate
the channel state information (CSI) in a cost-efficient way. With
calibrated CSI, a Greedy Rate Selection algorithm is proposed,
which leverages frequency diversity to obtain the optimal data
rate for both legacy 802.11a/g and 802.11n MIMO systems. We
have verified the efficiency of SmartPilot using GNU/USRP2
platform. The experiment results show that the channel esti-
mation error has been reduced 87% using SmartPilot. We also
conduct trace-driven simulations for greedy rate selection algo-
rithm based on CCSI using interconnected Matlab and C++.
Extensive results show that SmartPilot achieves 1.9×, 1.8×
and 1.3× throughput gain over SoftRate, ESNR and MiRA
respectively.

The design of SmartPilot provides a new panel to obtain
reliable control information across several protocol layers. In
next stage, we propose to exploit smart pilots to benefit more
communication systems [23], [24].
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