
FIMD: Fine-grained Device-free Motion Detection

Jiang Xiao, Kaishun Wu*, Youwen Yi, Lu Wang and Lionel M. Ni
Department of Computer Science and Engineering, Guangzhou HKUST Fok Ying Tung Research Institue,

The Hong Kong University of Science and Technology

*Corresponding Author

Email: {jxiao, kwinson, ywyi, wanglu, ni}@cse.ust.hk

Abstract—Device-free passive (Dfp) motion detection seeks to
monitor the position change of entities without actively carrying
any physical devices. Recently, WLAN with a rich set of installed
wireless infrastructures enables motion detection in the area of
interest. WLAN-enabled DfP motion detection rely on received
signal strength (RSS) is verified to be able to provide acceptable
high accuracy. Although RSS can be easily measured with
commercial equipments, it is suspectable to measurement itself
due to multipath effect in indoor environment. In this paper, we
present an Indoor device-free Motion Detection system (FIMD)
to overcome the preceding RSS-based limitation. FIMD explores
properties of Channel State Information (CSI) from PHY layer
in OFDM system. FIMD is designed based on the insight that
CSI maintains temporal stability in static environment, while
exhibits burst patterns when motion takes place. Motivated by
this observation, FIMD uses a novel feature extracted from
CSI to leverage its temporal stability and frequency diversity.
The motion detection is conducted with outliers identification
from normal features in continuous monitoring using density-
based DBSCAN algorithm. Moreover, we leverage two schemes
including false alert filter and data fusion to enhance the detection
accuracy.
We implement FIMD system with commercial IEEE 802.11n

NICs and evaluate its performance in two typical indoor sce-
narios. Experiment results show that FIMD can achieve high
detection rate. Moreover, comparing with RSSI, the feature
extracted from CSI enables better detection performance in
accuracy and robustness to narrowband interference.

Index Terms—PHY, CSI, WLAN, Motion Detection

I. INTRODUCTION

Motion detection is a fundamental process of detecting

whether there exists any entity moving around the area of

interest. It is an essential primitive that is increasingly needed

by a wide range of applications in wireless/mobile computing.

For instance, hospitals can monitor the status of patients and

release a health care alarm whenever the patient is in a

paroxysm of disease, the military can investigate the invasion

of enemies for frontier defence, and companies and residence

communities can surveillance anomalous intrusion for safety

precautions, etc. Although there exist several motion detection

systems, they have some inherent limitations. Device-based

motion detection is ubiquitously adopted in many works,

but it requires specialized hardware like accelerometer, radar-

sensor and photo-sensor, which is fairly unprofitable for large

deployments or useless under some conditions. Ideally, an

appropriate motion detection system should be able to provide

high detection accuracy, low latency, while can be spread

scalable. To this end, the concept of device-free motion

detection is proposed and developed with growing interest.

Recently, a worldwide convergence of wireless LANs

(WLAN) has occured for ease of installation and open access.

The popularity of WLAN has opened up a chance for research

community to develop device-free passive (Dfp) motion detec-

tion systems with well established WLAN infrastructure [2].

Radio signal strength (RSS), which is a coarse measurement

of the received power, has been widely applied for Dfp motion

detection in WLAN [8], [9], [4], [10]. In these WLAN-

based Dfp motion detection systems, researchers utilize the

existing access points (APs) to capture and process RSS

when received a packet. They explore the motion-dependent

characteristic of RSS for indicating the motion behavior. This

is due to the fact that RSS will become anomalous when

the environment changes. Even though the prior RSS-based

techniques have made significant progress, they still suffer

from the following main problem: RSS is known to be of

high variability as susceptible to the measurement itself. As

a result, slow dynamic is easily hidden by the inherent RSS

variance, which leads to miss detection.

Driven by the necessity of robust Dfp motion detection

systems, we argue that a reliable metric to overcome the

above challenges is in need. Such metric should meet two

requirements: first, it should provide the capability to resist

from the narrowband interference in the 2.4GHz band; second,

it should be temporal stable in static environment while

sensitive enough to a motion instantly. Fortunately, we gain

an opportunity to obtain such metric with the advance of

endorsement of Orthogonal Frequency Division Multiplexing

(OFDM) technique in the leading WLAN standards. Based

on OFDM system where data are modulated on multiple

frequency-independent subcarriers and transmitted simultane-

ously, channel measurement at the subcarrier level becomes

available. Such channel properties over all the subcarriers

in frequency domain can be represented by Channel State

Information (CSI) from PHY layer. Compared to RSS, CSI has

two advantages: first, CSI will only be influenced by several

subcarriers thanks to frequency diversity property [14], [15].

Second, unlike collecting RSS sequentially over time series,

CSI of multiple frequencies can be obtained at one time. CSI

value stays fairly stable over time in a static environment [14],

[15], which outperforms the spontaneous high variable RSS.

Third, CSI is independent of AP power adjustment instead

of susceptible RSS. Therefore, these three properties make

CSI a promising measurement to investigate for WLAN-based

device-free motion detection system.
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In this paper, we propose a novel metric based on CSI

inherent to IEEE 802.11n to address the device-free motion

detection problem. We present the design of a Fine-grained

Indoor Motion Detection (FIMD) system that provides high

accuracy. To achieve this, we first use commercial 802.11n

NICs to collect CSI samples by Detecting Points (DPs) fixed

in the area of interest. Next, a maximum eigenvalue-based

approach is proposed to extract the feature appropriate for

representing different signal patterns, i.e., static and dynamic.

Afterwards, we use the DBSCAN [7] algorithm to classify the

feature values and monitor the “burst” behavior over a single

RF link. Finally, we apply a simple windowing filter technique

to reduce the false alarm rate.

The key contributions in FIMD are summarized as follows.

1) We propose to use the fine-grained PHY layer informa-

tion CSI for motion detection and, to the best of our

knowledge, present the first description of why CSI is

more beneficial than traditional RSS-based approach in

WLAN: CSI is estimated with high accuracy, and exhibit

better temporal accuracy.

2) We present the design and implementation of our sys-

tem, showing how to exact the feature value based on

CSI by leveraging its temporal stability and frequency

diversity and use it for motion detection.

3) We implement the FIMD system in commercial IEEE

802.11 NICs. Evaluation results from real world experi-

ments demonstrate that the CSI-based motion detection

provided by FIMD can improve the detection accuracy

while reduce the false alarm rate, and outperform the

corresponding traditional RSSI-based RASID system.

The rest of this paper is organized as follows. In Sec-

tion II, we present the existing work on motion detection in

two categories of techniques: device-based and device-free.

Section III presents the architecture of the FIMD system.

This is followed by the methodology of the CSI-based DfP

motion detection in Section IV. In Section V, we introduce

the implementation of FIMD and evaluate its performance on

different scale environments and provide a comparison to RSS-

based RASID system. Finally, we render our conclusions and

suggestions are made for future research in Section VI .

II. RELATED WORK

Massive researches have been done in the area of motion

detection in the context of pervasive and mobile computing.

In general, it can be broadly classified as device-based and

device-free techniques.

Device-based techniques. Most approaches require the

entities to carry on special hardwares to achieve motion

detection capability, such as accelerometers, pressure sensors,

Infrared sensors, video cameras, etc. Nevertheless, the lim-

itation of wireless sensors [11] lies in the high cost and

the camera will loss function due to condition constrain.

Alternatively, Wallbaum et al. [8] employ radio signal strength

(RSS) using already installed WLAN infrastructure. Another

flavor of WLAN-based motion detection systems rely on tem-

poral channel response [1]. The authors propose to leverage

temporal channel response as a link signature between the

transmitter and receiver. With the knowledge of link signature

variance, a moving event of the transmitter can be detected [5],

[6]. However, these techniques are improper for ubiquitous

scale setting due to high cost or large deployment overhead.

Further, while they still require effort in terms of carrying

on device at the transmitter, our FIMD system is completely

device-free.

Device-free techniques. Researchers propose a nov-

el concept of Device-free [2], also known as Transceiver-

free [12] techniques. It explores a variety of technologies

to bypass the device-based constraint, such as computer vi-

sion [16], wireless sensors [12] and RFID tags [13], [9]. The

main drawbacks of these work lie in the need of special devices

compensating for the detection functionalities. In [2], the au-

thors alternatively exploit to leverage WLAN-based technique

to reduce the hardware efforts since the entity itself does not

carry on any wireless device. They discuss the challenges of

Device-free techniques and propose two feature extraction al-

gorithms including moving average (MA) and moving variance

(MV) for motion detection. [3] applies Maximum Likelihood

Estimator (MLE) algorithm to enhance the performance of the

DfP system in real environments. Recently, RSS-based RASID

system [4] further improve the detection accuracy by analyzing

the RSS features and adopting a nonparametric technique for

adapting to environment changes. In this paper, we introduce

the use of a new metric CSI from PHY layer for motion

detection, which can be sensitive to environment changes and

resist to temporal variance.

III. ARCHITECTURE

In this section, we present the architecture of FIMD along

with design challenges.

FIMD ia a system that exploits the suitable features of

CSI from commercial NICs to provide motion detection. In

general, narrowband interference at 2.4 GHz is unavoidable in

a monitored area of indoor setting. Therefore, in the presence

of narrowband interference, how to extract suitable features

from CSI for distinguishing signal patterns in static/dynamic

environments is the first challenge we need to overcome.

Channel State Information (CSI) is information that estimates

the channel by representing the channel properties of a com-

munication link. More specifically, CSI exploits the channel

status when a RF signal propagates over multiple subcar-

riers. Intuitively, CSI will exhibit different features under

static/dynamic environments. Even that CSI can differentially

represent the normal/dynamic patterns, there may still exist

false detection. For example, the false alarm rate will arise

due to the increasing huge volume of input data. Moreover, the

presence of noise under the combined effect of, for instance,

scattering, fading, and power decay with distance in collected

CSI samples may lead to miss detection. The second challenge

we need to undertake is how to accurately detect a motion

event with minimized erroneous. Besides, from the perspective

of communication efficiency, APs will adapt the transmission
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Fig. 1: System Architecture.

power in order to maximum the throughput. However, RSS-

based approach suffers from this power adjustment and causes

degrading detection accuracy. How to maintain the detection

capacity under adjustment condition remains a third challenge

in our work.

We first describe the overall vision of FIMD as shown in

Fig. 1. FIMD consists of three functional components: access

points (APs), detecting points (DPs), and FIMD server. The

APs will send out beacon messages over radio frequency (RF)

link. The DPs support the CSI collection functionality by

transmitting RF signal. FIMD server then complete the whole

detection process online. The APs and DPs are positioned

in the area of interest and kept stationary during the whole

detection period. In our setting, there are serveral pairs of

APs and DPs, each equipped with multiple antennas. Based

on the current IEEE 802.11n standards, no additional hardware

requirement on both APs and DPs. Upon periodically receiving

the OFDM beacon message from APs, DPs will first collect the

raw CSI value in the channel estimation block. Specifically,

let x be the transmitted vectors at APs, y be corresponding

received vectors at DPs, respectively. Then fine-grained CSI -

channel gain across all subcarriers at the PHY layer - can be

estimated as follows:

Ĥ =
y

x
. (1)

After that, FIMD server will import the CSI measurement

collected by the DPs and start the detection functionality.

There exists five important modules operating on the server,

including: CSI Feature Extraction, Burst Detection, Static

Map Construction, False Alert Filter, and Data Fusion. In the

designated CSI Feature Extraction module, raw CSI generated

from 30 groups different subcarriers will be first processed.

Intuitively, channel status information CSI will exhibit differ-

ential characteristics in static and dynamic environments. We

conduct preliminary experiments in typical indoor scenarios

to validate this intuition. We succeed in exploiting the char-

acteristic of CSI which reveals normal and motion behavior

in diverse ways. A maximum eigenvalue over sliding window

is used to represent the feature value corresponding to normal

or motion behavior. Next, the Burst Detection module runs on

the processed CSI-based feature value dataset over multiple

pairs of links independently. For burst detection, the link status

is analyzed using a density-based DBSCAN classification

algorithm. The algorithm will examine the feature value in

the dataset of each link to produce clusters. If the points in a

dataset belongs to a single cluster, the relevant status is deemed

to be static. In contrast, if there exists more than one cluster

in the particular dataset, it should be a dynamic status due to

motion behavior. Since there may exist false detection, further

analysis should be done to enhance the overall detection

performance. According to the initial obtained results from

Burst Detection, we generate two cases refinement: 1)False

Alarm Filter: using a simple windowing algorithm, we can

filter out the false detection that erroneously generate a burst

alarm when no motion appears; 2)Data Fusion: even when no

burst has been detected during the initial burst detection phase,

there may exist some missing cases. Therefore, we enhance

the detection accuracy by adding this Data Fusion module and

update the static feature of processed CSI. In what follows, we

will detail this proposed framework in a divide-and-conquer

manner.

IV. METHODOLOGY

In this section, we describe the design terminology of

FIMD. The methodology of this CSI-based motion detection

approach can be broken down into five parts according to the

corresponding modules introduced in previous section III.

A. CSI Feature Extraction

According to our modification of chipset firmware, the raw

CSIs are divided into 30 groups each with 2 subcarriers. The

N = 30 groups CSI values can be expressed as

H = [H1, H2, · · · , Hi, · · · , HN ]T , i ∈ [1, 30], (2)

where each subcarrier Hi is defined as

Hi = |Hi|ej sin{∠Hi}, (3)

where |Hi| is the amplitude response and ∠H is the phase

response of the ith subcarrier.

The first main module - CSI Feature Extraction serves as a

prerequisite of the following modules. The core idea of this

module is to process the 30 group CSIs data received from

multiple DPs, and explore the characteristics of CSI that distin-

gush the signal patterns under static or dynamic environemnts.
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Fig. 2: CSI Feature Extraction
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Fig. 3: CSI Features in Static/Dynamic Environments

Specifically, we tend to differeniate the CSI dynamic pattern

from CSI stationary pattern due to the movement of entities.

To this end, we first process continuous CSIs starting from

Hk over a sliding window W . Given a sliding window W with

length n, CSIs can be expressed as

H = [Hk,Hk+1, · · · ,Hk+n], (4)

Next, we need to identify the properties of CSI that reflects

static/dynamic signal patterns. In order to obtain the correla-

tion factor between each column of H, we generate a n-by-n
square matrix C over the n sequential packets as

C =

⎡
⎢⎣

C(i, i) · · · C(i, i + n)
...

. . .
...

C(i + n, i) · · · C(i + n, i + n)

⎤
⎥⎦ (5)

where each element C(i, j) in the matrix C is the correlation

ratio between the Hi and Hj as

C(i, j) = corr(Hi,Hj) (6)

The value of diagonal entries in matrix C is equaled to 1. In

our method, we multiply a scaler λ to obtain the eigenvector

eigen of matrix C. Thus, the CSI feature extraction problem

is equivalent to finding the maximum eigenvalue of this

eigenvector after normalization. The feature value associated

with CSI is defined as V,

V = max(eigen(C)/n) (7)

where n is the sliding window length that constraints the

column number of matrix C.

If all the eigenvalue of each column are the same as 1,

the corresponding maximum eigen(C) equals to 1 while the

rest are 0. Therefore, with higher correlation ratio between

each column in H, the signal will exhibit more likely to

be static. Reversely, if the eigenvalue suddenly decrease to

a small value, the lower correlation may indicate an occur-

rence of motion. We conducted preliminary experiments for

validating the proposed feature extraction approach. Typically,

the maximum and second maximum eigenvalues are large

while from the third one, the eigenvalue becomes small

and are considered negligible as shown in Fig. 2. We plot

the maximum and second maximum eigenvalues denoted as

feature x (x-axis) and feature y (y-axis) on a 2-dimensional

Fig. 3, respectively. There are three main observations from

the figure: 1)the eigenvalue in static status is maximum and

approaching to 1; 2)the eigenvalue will become smaller in

the dynamic environments; 3)if more people presented in the

region of interest, the eigenvalue will further decrease due to

higher variance.

Obtained from CSI-based correlation matrix C, eigenvalue

V is selected to be feature lying on two notable benefits.

First, such eigenvalue V is independent with power control.

RSS-based approach is known to be susceptible to transmitted

power at the APs, and thus requires additional APs comple-

ment. Alternatively, CSI-based eigenvalue relies on correlation

over multiple groups CSIs and irrelevant to power changing.

Second, this feature value is robust to narrowband interference

at 2.4 GHz.

B. Static Profile Construction

FIMD’s Static Profile Construction module represents the

stationary signal patterns in the monitored area. In our FIMD

system, this is an optional module only if off-line training is

available and necessary. It should be noted that we will not

use this module in our clustering based detection, but for the

comparison with RSS, this module is used in the RASID-like

approach.

Conceptually similar to recent work [4] that uses non-

parametric kernel density estimation of RSS value over time,

we then propose to leverage the more temporal stable metric

CSI and construct a static feature profile. In general, the

construction process is supposed to explore the frequency

diversity of CSI that represents the prominent static pattern

frequencies over multiple subcarriers. Therefore, instead of

using the coarse RSS defined in the estimated density func-

tion [4], this module inputs the stationary CSI-based feature

values generated from the Feature Extraction Module.

C. Burst Detection

The key module of our FIMD system is Burst Detection,

which plays an important role in the detection process. It

monitors the occurrences of CSI variance due to motion events
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Fig. 4: DBSCAN Clustering Results

during our measurement period. In particular, Burst Detection

views motion detection as a pattern recognition problem, rather

than a signature matching problem. It relies on the fact that

the patterns of motion events are necessarily anomalous, and

deviate from the static ones. Such that the burst CSI patterns

is deemed a possible motion action. Therefore, we need an

effective algorithm to classify the CSI patterns and determine

the “burst” motion occurrence. Density-bsed classification

algorithm DBSACN [7] is a good fit for Burst Detection

based on two favorable features: (1)no priori knowledge of

the numbers of clusters is required (2)discovery of clusters

with arbitrary shape.

There are two input parameters in our algorithm including

• ε (eps) - the radius that delimitate the neighborhood area

of a point, denoted as N(p)
• minP ts - minimum number of points that must exist in

the ε-neighborhood points,

The key idea of the DBSCAN clustering algorithm is that,

for each point in a cluster, ε-neighborhood has to contain at

least more than the minPts. That is, the density in the ε-

neighborhood has to exceed some predefined threshold. Given

a specific CSI-based feature value dataset of a RF link between

AP and DP, the DBSCAN clustering algorithm obeys the

following principles:

• Principle 1: Each cluster contains at least one feature

value Vi as core point p that the size of N(p) is at least

minP ts.

• Principle 2: Given any two feature values V1 and V2

with size of ε-neighborhood greater than minPts, then

V1 and V2 are in the same cluster.

• Principle 3: If feature value Vi has size of ε-

neighborhood less than minPts, and no core point is

contained in N(p), then Vi is an outlier.

In order to discuss whether a set of points is similar

enough to be considered a cluster, we need a distance measure

Dist(Vi, V j) which tells how far points Vi and Vj are.

In our algorithm, we apply Euclidian formula to measure

Dist(Vi, V j) as follows:

Dist(Vi,Vj) =
√
|xVi − xVj |2 − |yVi − yVj |2 (8)
###
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Fig. 5: Data Fusion over Multiple RF Links

Therefore, if the number of feature values assigned to a

particular cluster within a sliding window is greater than a

threshold η, the state is deemed to be static. Otherwise, it

is classified as a “Burst” state. Fig. 4 serves as an example

to show how DBSCAN is able to detect the motion event of

incoming feature value dataset. As mentioned in Sec. IV-A, we

generate the maximum eigenvalue and the second maximum

eigenvalue as feature values. We associate each feature value

as a point on a 2-dimensional density figure, and the results

of the cluster analysis in static/dynammic are shown in Fig. 4.

As previously stated, detection accuracy is the primary

design goal of FIMD system, we need to minimize the errors

that potentially happened in the whole detection procedure.

So we further perform two classes of schemes over the Burst

Detection results to resolve the false alarm and miss detection

as follows:

D. False Alarm Filter

From the perspective of improving detection ability, a

simple Burst Detection may be insufficient. Instead, a spe-

cific scheme to suppress the false alarm before generating a

detection alert is in need. Here, we choose to apply a simple

windowing technique.

Observed from the empirical study, a single motion instance

always lasts a short period when receiving continuous packets.

Such that the dynamic pattern can be determined from CSI-

based feature value over a specific sliding window W , as

well from the ones immediately to the left and right of W .

Based on the windowing filter, we shift the window to the left

neighbor and right neighbor and compute the corresponding

feature value. If the feature value in window is isolated from

the adjacent ones, then the “burst” instance generated from

Burst Detection module can be determined as a false detection

and filtered out.

E. Data Fusion

Another source of erroneous detection is known to be miss

detection. That is, for miss detection, we perform additional

steps to decrease the miss detection as few as possible.

Previously, each single RF link generates an initial detection

results based on Burst Detection algorithm, which the output is
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classified into either normal static or anomaly dynamic. Missed

Filter takes advantage of data fusion technique over multi-link

CSIs, which synergistically integrating the CSIs from multiple

links to produce comprehensive information about a detection

event. This results in a reduced false negative detection rate

over single-link approach. Fig. 5 shows multiple RF links

contributing their decisions whether a motion has taken place

or not to a fuser.

First, the output decision of Burst Detection module is

defined as D. Each Dout,i of a single RF link will then be

submitted to the Data Fusion block.

D =

{
1, dynamic ;

0, static .
(9)

The output of Data Fusion block Dout is given by

Dout =
P (D1, D2, . . . , Dn|D = 1)

P (D1, D2, . . . , Dn|D = 0)
(10)

where P (D1, D2, . . . , Dn|D = 1) is the probability of each

Burst Detection output Di if motion is known to occur.

Likewise, P (D1, D2, . . . , Dn|D = 0) is the probability of

output Di over a single RF link if the detection process is

in stationary. Therefore, Equation 10 is the likelihood ratio of

an overall burst detection.

V. PERFORMANCE EVALUATION

We divide the evaluation section into two parts: first, we

evaluate the performance of FIMD in two different indoor

scenarios; second, we compare the feature obtained from CSI

with that based on RSS on the RASID system [4].

A. Experimental Setting

As described in the previous section III, FIMD is imple-

mented in three main parts: APs, DPs and detection sever. In

our experiments, we use the TL-WR941ND router with three

antennas as AP, which runs on different channel. A HP laptop

equipped with a three-antenna Intel WiFi Link 5300 (iwl5300)

IEEE 802.11n NICs is used for DP. In our experiments, we

only use the first antenna and the enhancement with multiple

antennas is left for our future work. During the detection

period, APs will send out beacon messages to DPs. DPs gather

these messages along with CSIs and upload them to detection

server for processing.

We conduct experiments under two typical indoor scenarios

as follows:

1) Research Laboratory First, we set up a testbed in a

7m×11m research laboratory in Hong Kong University

of Science and Technology as shown in Fig. 6. The

AP was placed on the top of the shelters. At the DP

side, the CSI values were collected continuously in

both static and dynamic environments. In particular, DP

gathered the raw CSI of packages per minute in a

format as described in Section III and the total time

cost on data collection is two hours. For the purpose of

motion detection, we generated two test sets covering

the entire area of the laboratory including a static set

and a motion set. The motion set is formed by an

individual walking back and forth around the region of

interest with nonstop. Simultaneously, the counterpart

RSS values were recorded for comparison.

2) Corridor Second, we performed experiments in an

environment with multiple offices aside in our academic

building, which is a long and narrow corridor with

32.5m × 1.5m space. In this scenario, there is 1 pair

of AP and DP that placed in a fixed position as shown

in Fig. 7. We also collected same amount of CSIs over

transmission link and uploaded to FIMD server. For each

link, we recorded RSS samples for both performance

comparison in Section V.

B. Performance Evaluation

1) Evaluation Metric: We set up the following metric to

access the performance of the proposed FIMD system:

• True Positive (TP) Rate: TP rate refers to the probability

that a motion event is properly detected.

2) Experimental Results: First, we depict a Receiver Oper-

ating Characteristic (ROC) curve that graphically interpret the

detection performance in the presence of false alarm. ROC

curve can explicitly show the tradeoff between the FP rate

(X-axis)and TP rate (Y-axis). Here, we use DR to represent

the TP rate, which measures the effecitveness of the FIMD
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Fig. 9: CSI-based Feature vs. RSS-based Feature

system according to the following Equ. 11,

DR =
TP

(TP + F N)
× 100% (11)

Fig. 8 presents the MDR rate with respect to false alarm

rate in two testbeds. In Lab, for a FP rate less than or equal

to 1% the detection rate would be greater than 70%, and for a

FP rate greater than 14% the detection rate would be greater

than 90%. Likewise, the ROC curve in Corridor shows that

detection rate would be greater than 90% when FP rate is

around 9%.

3) Comparison with RSS-based: So far, we have been

focusing on the performance of the proposed CSI-based FIMD

system. To study the beneficial gain of CSI-based feature over

RSS-based feature, we compare it against the most relevant

RSS-based motion detection system RASID. RASID is a well

known RSS-based Device-free passive detection system which

consists of an offline training phase and an online monitoring

phase. It leverages standard deviation (SD) of RSS as the

feature approximates it distribution with a kernel function. For

a fair comparison, we keep the whole RASID detection process

and only replace the RSS-based feature with proposed CSI-

based feature. Where only the maximum eigenvalue extracted

from CSI correlation over a sliding window. We implement

RASID on FIMD server in both testbeds and set the sliding

window length to be 10 as shown in Fig. 9. The length of

update window is fixed to be 30. From Fig. 9, we can observe

that CSI-based feature slightly outperforms the RSS-based one

for the purpose of motion detection due to better temporal

stability. In summary, CSI-based feature can provide better

detection performance comparing with the counterpart based

on RSSI.

VI. CONCLUSIONS AND FUTURE WORK

A novel device-free indoor motion detection FIMD system

that uses existing WLAN infrastructure is presented in this

paper. For the first time, we propose to leverage the character-

istics of fine-grained CSI from PHY layer for distinguishing

static/dynamic environments in the indoor area of interest.

We first exploit such feature using CSI Feature Extraction

module and then utilize the DBSCAN algorithm in Burst

Detection module to monitor the motion behavior. After that,

we apply one scheme to reduce the false alarm rate. We

have implemented FIMD with commercial IEEE 802.11n

NICs and compared it against traditional RSS-based RASID

system. Using empirical testbed evaluation, we show that CSI-

based motion detection is feasible and outperforms the RSS-

based RASID system. Based on deployment in two different

scenarios, performance evaluation results show that FIMD

can achieve sufficient accuracy with the proposed CSI-based

feature.

In next stage, we plan to extend FIMD to distinguish

different kinds of motions.
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