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Abstract—The inevitable aging trend of the world’s population
brings a lot of challenges to the health care for the elderly.
For example, it is difficult to guarantee timely rescue for a
single-resided elder who falls at home. Under this circumstance,
a reliable automatic fall detection machine is in great need
for emergent rescue. However, the state-of-the-art fall detection
systems are suffering from serious privacy concerns, having
a high false alarm or being cumbersome for users. In this
paper, we propose a device-free fall detection system, namely G-
Fall, based on geophones. We first decompose the falling mode
and characterize it with time-dependent floor vibration features.
By leveraging Hidden Markov Model (HMM), our system is
able to recognize the fall event precisely and achieve training-
free recognition. It requires no training from the elderly but
only an HMM template learned in advance through a small
number of training samples. To reduce the false alarm rate,
we propose a novel reconfirmation mechanism, namely Energy-
of-Arrival (EoA) positioning to assist in recognizing a human’s
fall. Extensive experiments have been conducted on 12 human
subjects. The results demonstrate that G-Fall achieves a 95.74%
recognition precision with a false alarm rate of 5.30% on average.
Furthermore, with the assistance of EoA, the false alarm rate is
reduced to nearly 0%.

Index Terms—Fall detection, floor vibration, geophone, device-
free, training-free

I. INTRODUCTION

Worldwide, there were more than 960 million people aged
over 60 years in 2017. By 2050, that number is projected to be
more than double its size in 2017, hitting to around 2.1 billion
[1]. For the seniors, fall is one of the most prevalent problems
that they have to face daily. According to the World Health
Organization, approximately 28-35% of adults aged 65 and
older fall each year, increasing to 32-42% for those who aged
over 70 [2]. The hazard of non-fatal falls commonly includes
bruises, internal bleeding, and bone fractures. When it comes
to a fatal one, the fall event will be the symbol of a man’s
death. Among all the fall injury events, about 60% of them
happen at home [3], which means that there are a large number
of elders who live alone cannot get medical treatment in time,
and the prolonged lying on the ground may turn a non-fatal
fall to a fatal one.

Numerous literature proposed fall detection machine using
vision, IMUs, and radio frequency. However, none of these
fulfills the requirement of being privacy-protected, device-
free, training-free, and low false-alarm. As a human fall will
cause a huge impact on the floor, one way to recognize a
human fall is to analyze the floor vibration, but there are
only a few works can be mentioned. In [4], the authors
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proposed an automatic fall detection machine by deploying
an accelerometer on the floor. However, this system requires
the assistance of an acoustic microphone at the same time. It
only evaluates a mimicking human doll falls forward, and it
is a data-based system which fails with other test samples.

To implement a reliable vibration-based fall detection sys-
tem, we need to address the following challenges: i) The floor
vibration profile induced by many other objects fall from a
certain height is similar to human fall. How can we distinguish
a risky fall event from others? ii) It is impossible to let the
elders fall on the floor to train a classification model as most
systems do. Is there any way to realize a training-free fall
detection system by building a general template for all the
elders? iii) The demanding recognition task also results in
a high false alarm rate, making the system user-unfriendly.
What could we do to reduce the false alarm rate without the
intentional intervene by users?

In this paper, we first introduce two typical falling mode:
trip and slip. By comparing the waveform and spectrum of
vibration signals induced by different events, we find out that a
floor vibration profile of human fall has two special transition
states. We characterize the fall-induced vibration signals based
on the Discrete Wavelet Transform (DWT) which provides a
good trade-off for signals between time and frequency domain
and enables a good measurement of a fall event. Then, we
are able to recognize the testing fall samples precisely by
training a Hidden Markov Model (HMM) as a template with
a small number of training samples (e.g., 50 fall samples in
our baseline evaluation).

However, some of the vibration events have a similar pattern
of a human fall after applying DWT to the vibration signals
and thus cause a false alarm. In order to reduce the false alarm
rate, we propose a reconfirmation mechanism in the assistance
of EoA positioning. EoA, referred to as Energy-of-Arrival,
is an indoor positioning algorithm, which calculates the ratio
of received signals energy between each pair of sensors. In
contrast to the time difference of arrival (TDoA) mechanism
which requires high temporal resolution provided by a high
sampling rate, EoA requires no time information recorded
by sensors but only the energy of arrival. This makes the
EoA mechanism has a better performance especially when the
sampling rate is low and the time estimation error is high.

We implement G-Fall as a real-time fall detection system
on a Raspberry Pi with three geophones. Experiment results
show that G-Fall can characterize the fall event effectively and
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achieve 95.74% of recognition precision with false alarm rate
at 5.30%. Furthermore, the false alarm rate is reduced to nearly
0% with the assistance of the EoA reconfirmation mechanism,

In summary, the main contribution of this paper lies in the
following aspects.

• To the best of our knowledge, G-Fall is the first work
to realize a privacy-protected, device-free, training-free,
and low false-alarm fall detection machine with geophone
sensors.

• We propose a novel mechanism based on Energy-of-
Arrival (EoA), which enables the system to achieve
fine-grained indoor positioning without high sample fre-
quency. The false alarm rate is reduced from 5.30% to
nearly 0% using EoA.

• We design and implement the real-time automatic fall de-
tection machine leveraging the floor vibration. Extensive
experiments in a typical indoor scenario demonstrate its
feasibility of fall detection, achieving a high precision of
95.74%.

The remainder of this paper is organized as follows. We first
introduce the related work in Section II. Then in Section III,
we analyze the vibration waveform and spectrum, followed
by the description of design goals and three main modules
of G-Fall in Section IV. We illustrate our methodology in
Section V. Section VI explains the implementation detail and
provides evaluation results of G-Fall. Finally, the discussion
and conclusion are given in Section VII and Section VIII,
respectively.

II. RELATED WORK

Existing fall detection systems: Over the past decade,
extensive fall detection systems have been proposed. They can
be categorized as following four classes: vision based, IMUs
based, wireless radio based and ambient device based.

Vision-based fall detection systems [5]–[7] can detect a falls
event effectively after analyzing a series of images recorded
by high-resolution cameras using complex activity recognition
algorithms such as deep learning. Nonetheless, it lacks privacy
concern, for example, it is impossible to employ a camera in
the bathroom to detect a slip event. What’s more, the vision-
based systems fail to work under dark environment and non-
line-of-sight condition.

Numerous literature utilized the embedded Inertial Mea-
surement Units (IMUs) in the wearable device to detect a
fall [8]–[10]. They can recognize a fall event by monitoring
and analyzing the reading changes of accelerometer, gyroscope
and inclinometer. However, it is obtrusive and user-unfriendly
to carry a device, and the elders always forget to wear the
smartwatch.

Wireless radio is a good choice to realize a device-free fall
detection systems [11]–[13]. They require no on-body device
and bring no privacy issues, which makes the wireless radio
the most promising and charming research trend to realize
device-free fall detection systems. Nevertheless, the high false
alarm rate has been criticized for a long time, and the multipath

Fig. 1. Process of a trip

Fig. 2. Process of a slip

effect of wireless signals make it difficult to work in a dynamic
home environment.

As for ambient device based, audio [14] and floor vibration
[4] are used to characterize a human fall. The audio-based sys-
tems need to sense the sound of everything in the surroundings
and have poor resistance to noise, leading to a large proportion
of false alarm. There are also many challenges in realizing
a fall detection system using floor vibration. However, the
vibration signals propagating through the floor suffer almost
zero multipath effect. And the signals can retain well even in
a dynamic and complex environment [15]. In this paper, we
propose a device-free, training-free, and positioning-assisted
fall detection system with only vibration sensors, which can
accurately distinguish a human fall from daily living activities
or other objects that fall from a certain height.

Device-free indoor positioning: Another important tech-
nique related to G-Fall is device-free indoor positioning.
Occupants can be located with ambient sensors instead of car-
rying wearable devices. RF signal, acoustic, Ultra-wideband
(UWB), cameras and so on are used for indoor positioning.
To reduce the multipath effect of RF signals and acoustic, Floc
[15] suggested a vibration positioning methods with a SWIM
algorithm to detect the footsteps. [16] utilized the wavelet
transform and TDoA to localize the vibration of footsteps. Pan
et al. designed a hardware system called BOES [17] to collect
the footstep vibration and track the occupants. However, these
works required a high sampling rate to capture the precise
value of TDoA. We propose an EoA mechanism to localize
footsteps with the energy ratio between geophones in low
frequency. We successfully reduce the false alarm rate to
nearly 0% with EoA.

Vibration-based smart sensing: There are many interest-
ing vibration-based smart sensing system proposed in recent
years. FootprintID [18] utilized footsteps vibration to identify
occupants with an iterative transductive learning algorithm.
Pan et al. [19] presented a method to monitor multiple
occupant traffic by sensing the ambient structural vibration.
The system achieves occupant traffic monitoring by acquiring
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Fig. 3. Waveforms and spectrograms for body-induced vibration signals

Fig. 4. Waveforms and spectrograms for object-induced vibration signals

signals from structural vibration sensors and analyzing their
features. D Bales et al. [20] used footsteps vibration to classify
gender. [21] [22] used geophones to detect vibration to monitor
heartbeats when people are lying on the bed. There are some
works [23]–[26] using vibration to localize the finger tapping
to realize text input.

III. PRELIMINARY STUDY

The key reasons for a fall event for the elderly are i) physical
lesions incur the uncoordinated walking or faint. ii) losing
balance on a slippery floor such as in a bathroom. iii) falling
over the obstacles due to poor vision. Thus, we generally
classified the falling mode as trip and slip, as shown in Fig.
1 and Fig. 2. During the process of a trip, the knees usually
hit the ground first, and then the hands are supported on the
ground. In contrast, slip leads to the first landing of the hip
and followed by the support of hands or elbows.

In a typical house layout, there are many vibration sources
such as human’s walk, falling books, chairs or bottles. There-
fore, in this Section, we first study the waveform and spectrum
of the objects mentioned above.

Experimental Setup: We set up the pilot test in a 6m×8m
laboratory. Three geophones are respectively placed at three
corners on the anti-static floor covering an area of 3m×4.8m

as shown in Fig. 9. This area can be estimated as a typical
area of living room or bathroom. The sampling rate of G-Fall
is set to be 1190Hz. For body-induced vibration, as shown in
Fig. 9, we collect the signal of trips and slips on the red circle
area and the condescending footsteps along the track with an
interval of 60cm. For object-induced vibration, we record the
falling of a bottle of 400ml water, a 400-page book, a 2.5kg
chair. The bottle and book fall from a 50cm high desk.

Body-induced vibration: The waveform and spectrum of
trip and slip are shown in Fig. 3(a)-(d), where high-energy
frequency components are colored in red. During a trip, the
human body has a forward trend. In phase one, the knee is
centered on the foot and uses the length of the calf as the radius
to make the circular motion. But in phase two, the remaining
parts of the body make the circular motion centered on landed
knees, which results in a more considerable angular velocity
when the hands are landing. This process is represented as a
waveform of relatively low amplitude followed by a higher one
in the time domain. As for a slip, in reverse, most of the falling
force is neutralized when the hip is landing. The support hands
suffer smaller force then. There is a slight difference between
a trip and slip, but they both comprise two obvious transition
states on account that different part of the body contacts the
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floor in sequence. And compared to that of a footstep in Fig.
4(e)-(f), falls have a longer duration and higher energy.

Object-induced vibration: When it comes to object-
induced vibration event, from Fig. 3(a) and (c), the waveforms
for the book and chair seem to be more stable, unlike that of
a fall which has two obvious transition states. This is because
the rebound height of the chair is relatively low and even no
for a book. As for the bottle, after the rebound, it tends to roll
on the floor, resulting in a longer vibration signal.

Summary of observation: From the analysis above, we
have two observations: i) the vibration signals of a fall event
comprise two unique transition states, which is distinct from
other events; ii) a fall event, compared to a walk event which
is the main vibration source in daily life, has larger amplitude
and longer duration. These two observations provide us with a
hint to extract energy features and leverage the Hidden Markov
Model (HMM) to identify a human fall. (see more details in
Section V).

IV. SYSTEM OVERVIEW

A. Design Goals

G-Fall is designed to meet the following goals, which are
the basic properties if we want to put G-Fall into practical use.

1) Training-free: Traditional fall detection systems are
data-based and adopt machine learning algorithms that require
the users to train their own falling models in advanced.
However, it is impossible for these data-based fall detection
machines to collect the fall data from the elders. Therefore,
G-Fall needs to find a way to make sure it is a training-free
system for specific users.

2) High recognition accuracy: Timely fall detection and
warning is about saving lives, and ideally, we do not want to
miss the detection of each human fall event. Thus we have
to make sure the system provides a high recognition accuracy
for human fall.

3) Zero false alarm: It will be user-unfriendly and obtrusive
for the elder if they need to clear the alarm in person when a
false alarm happens. People will take hundreds of steps walk
a day, and then tens of clear operation are needed if the false
alarm rate is 10%. Thus, we have to find a suitable solution
to reduce the false alarm to zero as much as possible.

B. System Overview

The system architecture of G-Fall comprises three major
components in order to build a reliable system for automatic
fall detection. The following is the description of these com-
ponents.

1) Signals Detection: G-Fall employs three geophone sen-
sors to convert the vibration signals into digitalized electrical
signals. Then the signals are denoised using a 20Hz Butter-
worth high pass filter and segmented using an energy-based
dual-threshold mechanism.

2) Fall Recognition: In the classification phase, G-Fall ex-
tracts the unique features through Discrete Wavelet Transform
(DWT) based on the observation after the decomposition of
a fall event in the preliminary study. Then, a Hidden Markov
Model (HMM) is applied to complete a fall recognition.

Vibration signals

Signals
Detection

Sensing & Denosing

Signal Segmentaion

EoA Positioning

Potential
Human Fall?

EoA
Reconfirmacion

DWT Feature Extraction

Any moving signs?

Fall
Recognition

Human Fall
Warning

(Section V-B )

(Section V-A)

(Section V-C )

No

Yes

No

Yes

✔✔

HMM Classification

Fig. 5. System Overview of G-Fall

3) EoA Reconfirmation: In order to realize a zero false-
alarm fall detection system, in G-Fall, we adopt a straight-
forward but efficient idea with the assistance of positioning.
We come up with a novel positioning algorithm: Energy-of-
Arrival (EoA), which achieves decimeter-scale positioning and
reduces the false-alarm rate to nearly 0%.

Fig. 5 presents the work-flow of G-Fall. In the detection
phase, the system is sensing for vibration signal that breaks
the dual-threshold. When a vibration event is sensed, the
signals will be denoised and segmented. Afterwards, G-Fall
extracts the features of signals using DWT and matches the
pattern with the pre-trained HMM template in the database to
judge whether a potential human fall occurs. If so, the EoA
reconfirmation module will be turned on, and the system will
reconfirm the potential human fall with EoA mechanism by
detecting the moving signs of a human. A warning message
will be sent out for asking help ultimately if there are no signs
of human movement in a certain time; otherwise, the system
will regard the potential human fall as a false alarm and keep
sensing again without warning.

V. METHODOLOGY

In this section, we illustrate the details of G-Fall in three
major modules.

A. Signals Detection & Process

1) Sensing & Denosing: The geophone is designed as
a device for converting ground mechanical vibration signal
excited by an artificial source into an electrical one. Fig.
8 demonstrates the geophones we adopt, a cylinder whose
external diameter is 25 mm and the height is 30 mm. It

2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 03,2023 at 03:41:48 UTC from IEEE Xplore.  Restrictions apply. 



is sufficient to detect fall with one geophone sensor, but the
EoA positioning algorithm we design requires at least three
geophones. Fall-induced vibration signals are realized in low
frequencies domain (less than 300 Hz), and we sample them
using Raspberry Pi with a sampling frequency of 1190 Hz.
We leverage a 20 Hz Butterworth high pass filter to remove
the noise caused by the direct current component.

2) Segmentation: We adopt an energy-based dual-threshold
scheme to catch a fall event [15]. The energy levels are
calculated as the sum of the square of received signals in a
sliding window. The lower threshold is µ+σ, which is sensitive
to break. And the higher one is µ+ 3σ. The µ and σ are the
mean and standard deviation of signal energy, respectively.
When the upper threshold is exceeded, the lower threshold
will be considered as the start point of the detected signal.
As for the endpoint, we set it at 0.8 s after the start point,
as the duration of a fall is usually around it. Note that when
a potential fall event is detected, the upper threshold will be
reset for sensitive detection of a footstep in EoA. We deploy
three sensors in G-Fall, but only one channel with the highest
energy level will be segmented for feature extraction and input
HMM.

B. Fall Event Classification

1) Feature extraction: We model the fall event by profiling
the energy of each component in the frequency domain de-
rived from Time-Frequency analysis tool—Short-Time Fourier
Transform (STFT). However, in order to extract frequencies
at multiple resolutions with respect to various time scales,
the most relevant signal processing tool is discrete wavelet
transform (DWT). Comparing to STFT, the advantages of
DWT are [12]: i) DWT performs a nice tradeoff between time
and frequency resolution, and it groups frequencies that differ
by several orders of magnitude into a few levels so that it can
characterize the whole fall event. ii) DWT reduces the size
of the input sample so that the system can operate in real
time. We calculate the energies for 8 levels using Daubechies
wavelet in the order of 6 and extracts a 100-dimensional
feature vector.

2) Recognition with HMM: Recall that the observation in
Section 2, we can infer that a senior is probably falling
when looking at the transition between two states. Hidden
Markov Model (HMM) is a suitable method to establish a state
transition model using time-dependent features. HMM has
been successfully applied in several recognition applications
such as speech [27], handwriting, and gesture [28] recognition.
It is based on the assumption of a Markov chain: the state of
the next moment is determined only by the current state, and
does not depend on any state in the past. The probability from
the current state to the next state is defined as transition proba-
bility, and the probability of obtaining each potential observed
value based on the current state is called emission probability.
Afterwards, an HMM can be established given an initial state
vector. We get the final HMM model λ = (A,B,Π) by using
a small number of fall samples to train the three parameters:
transition probability matrix A, emission probability matrix

B, and initial state vector Π. Given an observation sequence,
i.e., the vibration signal, HMM can tell how likely it is to be
a human fall.

Specifically, we estimate the mean vector and covariance
matrix corresponding to each state and the transition proba-
bility with the well-known Baum-Welch Algorithm [29]. And
we finally decide the number of states to be 7 by iterating
through a different number of states and select the optimal
one. Note that the states in HMM are abstract parameters that
do not relate to the body state directly.

C. EoA Reconfirmation with Energy-of-Arrival (EoA)

1) Why EoA?: To eliminate the obtrusive false alarm,
we propose a straightforward yet effective idea that we can
reconfirm the existence of a risky fall event with the assistance
of indoor positioning. When a risky fall event occurs, in an
ordinary situation, the elderly lose their ability to make any
further movement to a new location. Therefore, if a series of
movement activities are captured using an indoor positioning
algorithm after a potential fall event is detected, we can
intuitively consider it as a false alarm and clear the warning
automatically without the intervention of humans. This makes
the system practical and user-friendly. Note that detecting any
vibration signals is not a necessary hint to clear the alarm,
because the fallen elder might stay conscious and struggle in
situ causing vibration on the floor.

Previous works [15] [16] realized decimeter-scale indoor
multilateration with three geophones using TDoA algorithm.
Estimating accurate time difference is essential for good posi-
tioning performance when using TDoA [30], but this requires
more complex hardware to provide high sample frequency
and thus increase the computation overhead. Furthermore,
the dispersion nature of floor vibration during propagation
resulting in different frequency components of wave travel
at different velocities [31] [32]. As a result, the estimated
propagation velocity of vibration signal varies largely, making
an unacceptable shift for located points when using TDoA.

Thus, we come up with a novel algorithm EoA, which can
realize fine-grained positioning at a low sample rate without
the estimation of the time difference and propagation velocity.

2) EoA Model and Principles: The key innovation of G-
Fall lies in reducing false alarm rate to zero using Energy-
of-Arrival (EoA) mechanism with low sample frequency. The
illustration of a multilateration using three geophones is shown
in Fig. 6.

More specifically, during the horizontal propagation of a
footstep-induced vibration, the signals will suffer attenuation,
and the model can be described as [33]:

Amp(d) = Amp0e
−α×d (1)

where Amp0 is the initial amplitude, d is the propagation
distance, and α is the attenuation coefficient depend on the
propagation media.

Now, given the amplitudes of arrival for three geophones
regarding to a certain distance d1, d2, d3 respectively to be
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Fig. 6. An illustration of EoA positioning
in G-Fall.

Fig. 7. An illustration of continuous walk
for three steps.

Fig. 8. A sample prototype of G-Fall

A(d1) = Amp0e
−α×d1

B(d2) = Amp0e
−α×d2

C(d3) = Amp0e
−α×d3

(2)

We then can calculate the energy of arrival for the attenuated
vibration signal from the reading of three geophone sensors.
By dividing any pair of energy recorded by geophone, the
initial amplitude of signals will be canceled out:

EAB =
A2(d1)

B2(d2)
= (

Amp0e
−α×d1

Amp0e−α×d2
)2 = e−2α×(d1−d2) (3)

where EAB is the ratio of energy of arrival from geophone A
to that from geophone B.

Given signals from a known coordinate point, we can cal-
culate EAB , d1 and d2. Then, we can estimate an attenuation
coefficient α of the floor from Equation (3). Afterwards, given
any vibration signals generated from an unknown location. We
have the following relationship based on the energy of arrival:

d1 − d2 =
lnEAB
−2α

= c1 (4)

d1 − d3 =
lnEAC
−2α

= c2 (5)

where c1 and c2 are constant.
From Equation (4), we find that the unknown point D(x,y)

is a moving point that the difference of the distances from
two fixed points is a constant, which means the trajectory of
D(x,y) is one side of a hyperbola. And the intersection of
another hyperbola is the estimation of vibration source.

3) Detection of Moving Signs: In Fig. 7, we depict a
continuous walk of three steps with stride length of Lcm.
The stride length vary from 40cm to 80cm for the elders
aged over 60 [34]. Given the estimation error of EoA is below
24cm (see Fig. 13), the estimated coordinate of fall position
is P0(n0,m0) and that of next three steps is P1(n1,m1),
P2(n2,m2), P3(n3,m3) respectively, we acquire a lowest
threshold THR to judge a movement:

THR =
3∑
i=1

√
(ni − n0)2 + (mi −m0)2 (6)

The threshold will be hard to reach if a potential fall event
is detected and the fallen elder struggles in situ. G-Fall regards
the potential fall event as a real and fatal one and sends the
warning message if the threshold is not exceeded in a pre-
set time. But once it is overpassed, we consider a further
movement of human occurs, and the potential fall event is
a false alarm.

VI. EVALUATION

This section will present the implementation and experi-
mental settings of G-Fall first, followed by the results for
recognizing a fall event under different setting and verifying
the effectiveness of EoA mechanism.

A. Experimental setting

Implementation:
We implement a prototype (see Fig. 8) with a Raspberry

Pi controller and an Analog to Digital Converter (ADC).
Three geophones with amplifiers were used to collect vibration
signals. We set amplifiers as 100X and sampling rate as 1190
Hz. To fix the sampling rate, we used BCM2835 Library with
C. In order to realize a real-time system, we transmitted signals
to a conventional desktop computer by a PL2303 USB To
Transistor-transistor logic (TTL) Converter Adapter Module
via WiringPi Library with C. The data is then analyzed in
MATLAB platform.

Experimental setup:
The experiment environment is a typical 6m × 8m lab

with the anti-static floor. Three geophones cover an area of
3m × 4.8m as shown in Fig. 9. To evaluate our systems, we
recruited 12 participants (2 of them are female) whose height,
weight, and age are in the range of 156cm–182cm, 48kg–68kg,
and 19–29 respectively. And the height-weight-age table of the
participants is listed in Table I.

All the data are collected and saved for off-line analysis
with G-Fall system running in real time. Each experiment
is repeated for ten times to get the average results. The
participants are asked to perform the actions described in
Table II, each for 25 times, resulting in 5400 responses
((10 actions+2 walks×4 steps)×25 times×12 subjects).
Note that the participants are asked to perform trips and slips
depicted in Fig. 1 and 2 as real as possible. And they are given
a 2-minute warm-up period to practice the required actions.
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Fig. 9. A lab with anti-static floor. The red arrows point at the geophones.

TABLE I
The height-weight-age table of the participants

No. H(cm) W(kg) Age No. H(cm) W(kg) Age

1 178 58 19 7 168 58 21
2 179 57 20 8 181 68 22
3 170 60 26 9 168 58 21
4 177 66 27 10 156 48 20
5 165 61 29 11 168 52 20
6 168 55 20 12 182 59 21

As for objects, we perform the falling of a bottle of 400ml
water, a 400 pages book, and a 2.5kg chair, each for 25 times
respectively, generating 75 responses (25 times× 3 objects).
Note that all the participants are required to wear protective
gears when falling, and a cushion is also used when perform-
ing slip for protecting hip bone. The whole process of falling
brings no harm to the subjects. And all the experiments in-
volved human subjects have been approved by the Institutional
Review Board in our university.

Metrics: We introduce two metrics to analyze the perfor-
mance of G-Fall, namely, recognition precision (Precesion)
and false-alarm rate (Pfls). The definitions are shown as
follows. Note that other events refer to all the non-human fall
events.

Precision =
# of truly detected fall

# of human fall
(7)

Pfls =
# of wrongly detected fall

# of other events
(8)

B. Recognition accuracy

1) Baseline Performance: We first perform a baseline test
for recognizing fall event with only one person in the training
set. Specifically, the 50 fall samples (25 trips and 25 slips) in
location A of each participant are used to train the HMM in
turn before testing with the rest of the samples. The detailed
statistics are listed in Table III. In total, with only one person
in the training set, 495.45 out of 550 human falls are detected
correctly, yielding a precision of 90.08% with the false-alarm
rate at 12.30% on average. We mark this as the baseline
performance of G-Fall.

TABLE II
Description of actions for the data collection

Standard Fall Loc. Other Actions Loc.

Trip forward A Sit A
Trip forward B Mark time Heavily A
Trip forward C Fall forward from a chair A

Slip backward A Trip forward-Hold on a chair A
Slip backward B Walk normally along the track Track
Slip backward C Walk heavily along the track Track

TABLE III
Baseline performance of G-Fall with one person in the training set

Event
Class. As Human Fall Others Total Accuracy

Human Fall 495.45 54.55 550 90.08%
Sit 22.68 277.32 300 92.44%

Mark Time 22.68 277.32 300 78.65%
Normal Walk 54.81 1145.19 1200 95.43%
Heavy Walk 227.41 972.59 1200 81.05%

Objects 6.75 68.25 75 91.00%

We notice that the majority of false alarms is contributed
by the “heavy actions” like marking time and walking heavily.
However, the other results show that our system is relatively
robust that will not take the normal daily activities as human
fall easily. The uniqueness of a human fall is mainly because of
the transition state mentioned in Section III. And the process
of human fall that we decompose has two parts of body contact
with the floor, which can also be considered as two objects fall
successively during a short time. This happens uncommonly
and makes the human fall distinguishable from other events.
Furthermore, in Table IV, comparing to other machine learning
algorithms, HMM does present better performance when ap-
plying DWT which extracts the time-dependent features from
the vibration profile of the human fall.

2) Impact of training set size: Since G-Fall characterizes
the general fall event through a training-free HMM template,
we need to train the template as best as possible before
practical use. Intuitively, the recognition performance of our
system can be improved by enlarging the training set size.
To verify this hypothesis, we evaluate the performance by
increasing the number of people in training set from 1 to 7, and
the results are given in Fig. 11. We can see that the recognition
precision rises upward monotonically from 90.08% to 95.74%
with the increase in the number of training people. And the
false-alarm rate drop at the same time to the minimum of
5.30% with a seven-person-trained HMM. This indicates that
G-Fall does have a better performance if we diverse the initial
training sets with more people’s fall samples.

3) Impact of different locations: As a training-free fall de-
tection system, G-Fall should function properly and recognize
the human fall event at any location even though it depends
on a template trained by the samples collected from a specific
location. For example, if we build a template using the fall
samples collected at location A, the system should recognize
a fall at location B or C. To validate this hypothesis, we trained
the HMM in turn with 25 trips and 25 slips samples of each
subject at location A, then test it using the remaining fall
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Fig. 10. Discrete wavelet transform (DWT) of time-series for human fall at different location regarding to the same geophone.

Fig. 11. Impact of training set size for G-Fall Fig. 12. Impact of different location and non-
standard fall for G-Fall

Fig. 13. The positioning error of TDoA and EoA
with sample rate at 65kHz and 1190Hz

TABLE IV
Comparison of different classifier with one person in the training set

Items HMM [29] KNN [35] SVM [36] BPNN [37]
Precision 90.08% 83.21% 79.73% 82.08%

Pfls 12.30% 17.34% 12.55% 15.70%

samples collected at B and C. The results are shown in Fig.
12, where the precision suffers no degradation when testing
with the samples from other locations. This verifies that G-
Fall can recognize human fall at anywhere even if we train
the template with the human fall samples collected from only
one specific location.

Fig. 10(a)-(c) plot the vibration waveforms collected from
different falling location and its corresponding DWT. From
these figures, we observe that the DWT features that G-
Fall extract follows similar pattern even though the vibration
waveforms vary from each other.

4) Impact of non-standard fall: We select two typical fall
modes: trip and slip as a standard to represent the majority
of the fall event. However, there is a great variety of posture
when users fall in practical. To study the impact when people
perform non-standard falls, we ask 12 of our participants to fall
from a 45cm height chair (Fchair@A) and fall with their hands
held on a chair at last(Hchair@A), each for 25 times. We train
the HMM with only one participant’s 50 fall samples (25 trips
and 25 slips) and test with the non-standard fall samples. In
Fig. 12, we can see that there is also no impact on the system
performance when testing with non-standard fall. The result

indicates that G-Fall can recognize a certain falling pattern
with HMM as classifier even when some posture variation
of fall occurs. We think this is because the signals of floor
vibration suffer less influence from complex human motions
comparing to those fall detection systems which capture the
human motions using accelerometer or gyroscope.

C. Effectiveness of Energy-of-Arrival

1) Accuracy of EoA: To realize positioning with TDoA and
EoA, we first use three known points to estimate the wave
velocity v0 and the attenuation coefficient α, yielding v0 of
220m/s and α of 0.2961. Then, we select the other 6 points
as ground truth, estimating the coordinate for 20 times each
using TDoA and EoA respectively. Fig. 13 shows the results of
positioning performance for different sample rate and methods.
EoA achieves nearly the same performance as TDoA with
high sample rate at 65kHz, and there is an 80% possibility
where the positioning error goes below 20cm. However, EoA
outperforms TDoA when the sample rate drops to 1190Hz.

This is because the estimation of time difference become
inaccurate under the situation of low sample rate, leading to a
considerable shift from the ground truth, while the estimation
of energy requiring low temporal resolution and suffer no
obvious degradation under the same situation. What’s more,
the TDoA based positioning system using geophones is based
on the assumption that the wave propagates velocity is stable.
However, in fact, during propagation, the velocity varies a lot
in a different direction because of the dispersion nature [31]
[32]. Therefore, the inaccurate estimation of time difference
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has a more significant impact on the positioning accuracy
comparing to EoA whose assumption is that the attenuation
coefficient of a specific media will not change.

2) After Reconfirmation with EoA : When a false alarm
occurs, we assume that the elders will keep walking to clear
the unsent alarm. Hence, we use the continuous four-step
samples mentioned in the experimental setup to test the EoA
reconfirmation module of G-Fall. So we can see from Fig. 11,
when the EoA reconfirmation is turn on, the false alarm rate
declined sharply to almost zero. However, indeed, the false
alarm might still occur in some special case, but the results
do verify the effectiveness of the EoA mechanism for reducing
the false alarm rate.

VII. CONCLUSION

In this paper, we propose G-Fall, a positioning-assisted,
zero false-alarm, device-free and training-free automatic fall
detection system for single-resided elders. G-Fall deploys three
geophones on the corners respectively to receive the floor
vibration signals. We analyze the floor vibration induced by the
human fall and extract time-dependent features to distinguish
a human fall from other events with Hidden Markov Model.
We prototype G-Fall with Raspberry Pi, which can recognize
a fall event in real time with a user interface in MATLAB
platform. The evaluation results demonstrate that G-Fall has a
high potential to put into practical use.
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