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Abstract—Wi-Fi technology is becoming a promising enabler of device-free fitness tracking to provide reviews and recommendations
for effective homely exercise. State-of-the-art Wi-Fi fitness assistants succeed in recognizing the simple meta-movements (e.g.,
Push-Up and Squat) with discrete and repeatable patterns. Unfortunately, these prior attempts can hardly scale to the combination
movements of ever-growing interests in intensive fitness programs. Combination movements are composed of meta-movements that
are mutually concatenated or inserted. They have a compound characteristic that inherits from the diversity of combination orders and
continuity of meta-movements. The compound characteristic causes substantial training data collection costs and a challenge of
combination decomposition that is a prerequisite for providing fine-grained fitness assessment. To this end, we propose InFit, a
Wi-Fi-based device-free fitness assistant system for combination movements. First, we design a novel data augmentation method,
namely Stitching-based Virtual Sample Generation (SVSG), to reduce the training data collection costs by generating virtual
combination movements. Second, a 2-stage combination movement recognition model is designed to learn temporal dependencies
between movements and decompose combination movements. From its outputs, we can tell whether a combination movement is
standard. Extensive experimental results show that InFit can achieve an average recognition accuracy of 94%. With zero training
samples of combination movements, the average accuracy is 40% higher than the baselines. In addition, SVSG can provide a general
enhancement on multiple competing schemes with similar sensing tasks.

Index Terms—Fitness assistant, Combination movement, meta-movement, Virtual sample generation, Wi-Fi.

✦

1 INTRODUCTION

A T-home workout such as high-intensity interval training
(HIIT) [1] is becoming a trendy way of keeping healthy

and in shape [2], not only for the routine fitness but also in
light of the COVID-19 outbreak. In general, a fitness regime
with high intensity can bring tangible health benefits, in-
cluding improving lung capacity, decreasing body fat, and
strengthening cardiopulmonary function, etc. Meanwhile,
this may lead to a high possibility of injury risks [3]. Hiring
a personal trainer is expensive and unavailable at home,
especially during an epidemic like COVID-19. Hence, there
is an emerging trend of utilizing virtual fitness assistants to
improve workout effectiveness.

Referring to state-of-the-art systems [4], the key require-
ments of a virtual fitness assistant are not only movement
recognition and number counting but also fine-grained
assessments of workout quality. Thus, users can know
whether their movements are standard and how effectively
they exercise. Researchers have explored various signal
sources to assess fitness movements, especially camera-
based [5] and wearable sensor-based [6], [7] solutions. How-
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ever, camera-based solutions require good lighting condi-
tions and may cause privacy concerns, making them inap-
propriate for in-home environments. Sensor-based methods
are environment-independent but impose wearing burdens
on people. Accounting for this, we select to leverage Wi-Fi
for fitness movement recognition and assessment since Wi-
Fi signals are robust to lighting condition changes and have
a low risk of privacy concerns. Moreover, many works [8],
[9] have validated that monitor movements precisely in a
device-free manner.

In-home fitness movements can be divided into two-
folds: meta-movement and combination movement. Cur-
rent Wi-Fi-based fitness assistant systems [4], [10] focus
on the meta-movements, e.g., squat and sit-up. We de-
fine the meta-movement as the movements with repeatable
and undivided patterns. “Repeatable” means that there are
no connecting movements between the repetitions when
movement is repeated. Thereby, the start and end postures
of a meta-movement are the same. “Undivided” gives a
constraint that a meta-movement cannot be decomposed
into multiple repeatable movements.

Combination movements are the compositions of meta-
movements under two requirements. First, there should be
the reasonable logic among adjacent meta-movements. For
example, people cannot jump again when they are in the air,
or begin a squat during in the mid-time of push-up. Second,
combination movements should have repeatable movement
patterns. Theoretically, people can design countless combi-
nation movements. Hence, combination movements have a
compound characteristic that inherits from the continuity of
meta-movements and diversity of combination orders. This
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Fig. 1: Combination movements stem from meta-movements through the concatenation and insertion rules.

compound characteristic causes new challenges in training
data collection and fitness assessment. Hence, we propose
InFit, a device-free combination-movement-oriented fitness
assistant based on Wi-Fi signal.

The diversity leads to a substantial data collection cost.
As shown in Fig. 1, combination movements are composed
of different numbers of different meta-movements in a
relatively free sequence through insertion (⊖) and concate-
nation (⊕) rules. The types of combination movements are
far more than that of the meta-movements. Besides the
diversity of meta-movement types, users can easily design
new combination movements by changing the number of
meta-movements. For example, users can design a enhanced
version of Leg-Thrust⊕Push-Up by repeating the leg-thrust.
Therefore, it is unsustainable to collect the data of all the
combination movements for training. To reduce the training
data collecting costs of combination movement, we propose
a Stitching-based Virtual Sample Generation (SVSG). SVSG
generates virtual combination movement samples by simu-
lating the composition rules of insertion and concatenation.
The virtual samples can augment the temporal correlations
between meta-movements within combination movements.

The continuity makes it challenging to decompose com-
bination movements for a fine-grained fitness assessment.
The transition states (e.g., pauses) among meta-movements
are variable, making existing segmentation methods unsuit-
able for decomposing combination movements into meta-
movement sequences. Thus, it isn’t easy to assess the effec-
tiveness of a combination movement since we don’t know
the completion quality of the meta-movements within it.
Fortunately, we observe that every meta-movement consists
of two reversed movement states: retraction and extension.
Both of them have a common speed change trend: beginning
with an ascending speed and ending with a descending
speed. Based on these observations, we design a 2-stage
combination movement recognition model. It leverages the
temporal dependencies of movement speeds to decompose
combination movements, making InFit able to provide fine-
grained fitness assessments.

The contributions of this work can be summarized as
follows:

• To the best of our knowledge, InFit is the first in-
depth analysis of combination movements and ex-
ploits the unique compound characteristic for recog-
nition under the condition of insufficient combina-

tion movement data.
• We propose the SVSG for data augmentation. SVSG

combines meta-movements by simulating the com-
bination rules to generate virtual combination move-
ments. Thus, SVSG can provide sufficient data for the
recognition model to learn the context information
between meta-movements.

• We observe a common speed change rule shared
by meta-movements. Based on this rule, we design
a 2-stage combination movement recognition model
to provide fine-grained movement information for
fitness assessments.

• Experimental results show that InFit achieves an
average combination motion recognition accuracy of
94%. The recognition accuracy under the condition
of zero-knowledge is 40% higher than the state-
of-the-arts. Moreover, SVSG can provide a general
enhancement even for other schemes designed for
similar tasks.

The rest of this paper is organized as follows: In Sec-
tion 2, we compare InFit with the related work. In Section 3,
we introduce the architecture of InFit followed by the de-
tails of preprocessing, data augmentation, and movement
recognition. Then, we evaluate InFit in Section 4 and give a
conclusion in Section 5.

2 RELATED WORK

In this section, we review existing fitness assistants
and WiFi-based activity identification systems grouped
into three categories: Vision-based, Inertial sensor-based, and
Wireless-based.

Vision-based fitness assistant systems leverage image
processing techniques to extract movement information
from RGB [5] or depth [11], [12] images. They can accurately
track human poses, but their performance depends on the
brightness conditions and cannot track the occluded targets.
Besides, deploying cameras in-home may bring privacy
concerns.

Inertial sensor-based systems, e.g., RecoFit [13], Fit-
Coach [6], and MM-Fit [14], attach inertial sensors on human
body or fitness equipment to monitor workout activities.
They are more robust to environment changes than the
vision-based systems, while suffering more tedious data
collection processes. Xie et al. [15] assume that derived
from some meta-activities with small-angle changes. They
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Fig. 2: The architecture of InFit. In the last component, “BRNN4CM”, “BRNN4SD”, and “BRNN4SM” are the BRNNs for
combination movement estimation (4CM), state detection (4SD), and meta-movement recognition (4MM), respectively.

converted movements into meta-activity sequences and rec-
ognized their types through a lightweight model trained by
a few samples to lower the data overheads. Unfortunately,
such a meta-activity-based method is unsuitable for Wi-Fi-
based sensing tasks. Due to the narrow bandwidth, it is non-
trivial to use commercial Off-the-shelf Wi-Fi devices to track
specific body parts.

Wireless-based activity sensing technology shows a
promising future due to the non-invasive and penetrat-
ing characteristics. Researchers have tried to leverage dif-
ferent wireless signals, e.g., Radio Frequency Identification
(RFID) [16], ultrasonic signals [4], and Wi-Fi [17], for move-
ment recognition. Existing wireless-based systems can be
divided into two categories. The first category is Detection
Before Recognition where the systems extract movement-
related signal segments from the received signal streams
according to some clear transition states (i.e., static inter-
vals [8], [10] and preamble gestures [9]). Then, they leverage
machine learning methods for recognition. Such systems
regard every movement as a meta-movement. As a result,
collecting labeled data of diverse combination movements
is labor tedious, which limits their practically. The second
category is Recognition Before Detection where the systems
first recognize the type of movements followed by counting
the repetitions. Like WiStep [18] and WiRun [19], they ex-
tracted the specific walking-induced sinusoid-like patterns
from the received Wi-Fi signals and adopted peak detection
to count steps. Nevertheless, such peak detection methods is
unavailable for combination movements due to the complex
movement patterns. DeepSense [20] and EI [21] turned
movement recognition into sequence-to-sequence classifi-
cation problems, making them able to recognize complex
movement patterns. However, they cannot provide a fine-
grained assessment of exercise quality because of lacking
the capabilities to decompose combination movements. To
this end, we combine meta-movements to generate virtual
combination movements for data augmentation and design
a combination-movement-oriented recognition model for
fitness assessment.

3 SYSTEM DESIGN

InFit consists of three components: Preprocessing, Data Aug-
mentation, and Movement Recognition as shown in Fig. 2. In

Preprocessing, InFit takes two types of data as inputs. One
is noisy CSI measurements caused by the multipath effect
and the imperfect design of devices. Therefore, InFit adopts
a series of operations to extract speed features from the
noisy signals. The other type is a predefined movement table
recording registered meta-movements and the derived com-
bination movements. InFit leverages this movement table as
a guide to generate virtual samples in Data augmentation.
Finally, we gather the virtual samples and the real ones
together to train a 2-stage movement recognition model in
Movement recognition. This model can identify movement
types and provide fine-grained fitness assessment.

3.1 Preprocessing

Human movements can change the associated reflection
paths, resulting in Doppler shifts. It allows us to infer the
speed pattern of movements according to the frequency
shifts. In this section, we introduce how InFit mitigates the
noise and transforms the CSI into a more intuitive format.

Noise Reduction. CSI depicts the channel states of
propagation links, which are influenced by the effects of
scattering, fading, multipath, and hardware imperfection.
The received CSI of a transmitting-receiving antennas pair (T-
R pair) at time t is H(f, t) = e−i∆θ(

∑PS

k=1 αke
−i2πfτk +∑PD

k=1 αke
−i2πfτk), where f is the carrier frequency, τk is the

propagation time of path αk, PD and PS are the propagation
paths reflected by human body and static things, e.g., wall,
floor, and roof. ∆θ indicates the linear phase offsets caused
by imperfect design of devices [22]. Therefore, our goal is to
extract

∑PD

k=1 αke
−i2πfτk from the received signals.

InFit removes ∆θ through the conjugate multiplication
proposed by Qian et al. [23]. We set one receiver equipped
with three antennas to receive Wi-Fi signals in this
work. The receiving antennas share the same processing
circuits and experience similar phase shifts caused by
hardware imperfection. Therefore, we can remove the
phase shifts by calculating the conjugate multiplication
of two antennas’ measurements: H1(f, t)H2(f, t)

∗ =
Hs1(f, t)H

∗
s2(f, t) + Hs1(f, t)

∑
d2∈Pd2

ad2e
+i2πfτd2 +

H∗
s2(f, t)

∑
d1∈Pd1

ad1e
−i2πfτd1 +∑

d1∈Pd1,d2∈Pd2
ad1ad2e

−i2πf(τd1−τd2).
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Fig. 3: Spectrogram and NA-PSD of leg-up

The first component, Hs1(f, t)H
∗
s2(f, t), has no fre-

quency shifts, and we can remove it by a high-pass filter.
The fourth component indicates the difference between two
propagation paths, which negatively influence reproducing
movement speed patterns. Fortunately, it can also be filtered
out by the high-pass filter. The fourth component related
phase shifts is decided by the path difference d1 − d2. This
difference is approximately equal to the distance between
the antennas pair. Therefore, the corresponding frequency
shifts are close to zero Hertz. The next step is to let one of the
remained two components dominates H1(f, t)H2(f, t)

∗. We
select two antennas with the highest amplitude and variance
of CSI and calculate their conjugate multiplication. Next, we
remove the information of moving directions by calculating
|H1(f, t)H2(f, t)

∗| to simplify the system design. The CSI
extraction tool [24] InFit used can report 30 sub-carriers in a
propagation channel. Hence, the conjugate multiplication is
|h1 ◦ h∗

2| = {|h1(f1)h2(f1)
∗|, . . . , |h1(f30)h2(f30)

∗|}.
Then, we leverage a band-pass filter to remove the low-

frequency noise discussed above and high-frequency noise
beyond the upper bound on the motion-induced frequency
shifts. Previous studies [25], [26] have validated that motion-
induced Doppler shifts can be calculated by f = 2v

λ , where
v and λ are movement speed and RF signals’ wavelength,
respectively. InFit works at channel 36, the center frequency
is 5.18GHz, and λ is about 0.05m. Since the speeds of most
indoor fitness movements are lower than 5m/s, the pass-
band is set to [2Hz, 200Hz].

Finally, InFit leverages Principal Component Analysis
(PCA) to remove the in-band noise and reduce feature
dimensions [25]. The signal streams are cut into chunks by
a sliding window. The window size and stride length are
both one second. We utilize PCA to calculate the principal
components of each chunk and calculate the average value
of the principal components from the second to the fifth to
reduce the feature dimension.

Speed Representation. InFit transforms the denoised
data into more intuitive formats: a spectrogram and a nor-
malized accumulative power spectral density (NA-PSD) curve.
The former reflects the fine-grained speed information of
movement, providing rich features for movement recogni-
tion. The latter reflects the coarse-grained speed information
of the whole-body movement and simplifies the designs of
InFit, i.e., SVSG, dynamic fragmentation, data annotation,
and fitness assessment.

InFit calculates the spectrogram of the de-noised CSI by
short-time Fourier transform. The sliding window size is
set to 512, and the stride length is 16. As shown by the
spectrogram on the left in Fig. 3, the left y-axis is the motion-
induced frequency offsets, proportional to the movement
speed. The temperature of the pixels indicates signal energy,

reflecting the size of the reflective surface. Specifically, when
the user lifting his leg, his thigh and feet move with a similar
angular speed-changing trend. Thigh moves in low speed,
causing low-frequency offsets, while the larger surface size
can reflect more signal than feet resulting in stronger signal
strength. In contrast, the feet move faster, but their smaller
reflection areas make the corresponding signal strength
weaker.

The red line in the spectrogram is the NA-PSD, an inte-
grated indicator of frequency offsets and signal strengths:
napsd(t) = MINMAX(

∑Nf

i=1 fi ∗ ri(fi, t)). Nf is the
number of frequencies, fi is the frequency offset related to
moving speed, and ri(fi, t) is the signal power associated
with the size of the reflection surface. Hence, the NA-PSD
is dominated by the body parts with larger sizes and faster
speeds.

3.2 Data Augmentation

SVSG generates virtual samples by simulating the composi-
tion rules of concatenation and insertion. To make the virtual
samples as real as possible, the problems of “when to stitch”
and “how to stitch” need to be solved.

“When to stitch” means that meta-movements need to
be reasonably connected. For example, a person cannot do a
push-up when jumping in the air. Combination movements
can derived from meta-movements through two ways:

• Concatenation operation stitches the meta-movements
in a chain rule. We determine a random place on
the last quarter of the NA-PSD curve of the pre-
vious meta-movement, and its NA-PSD value is v.
Then, we scan the NA-PSD curve of the latter meta-
movement. The first place that reaches the NA-PSD
value v is the connection place.

• Insertion operation constructs virtual samples by in-
serting meta-movements in other ones. The place
to insert is named “final position,” [10] which di-
vides a meta-movement into two reversed move-
ment states: retraction and extension. We observe
that these movement states have a common speed
change trend: ascending at the beginning and de-
scending before entering the next part. Hence, the
final position has a minimal value. Based on this
observation, we determine the insertion place by
finding the local minimum speed close to the central
place on the NA-PSD curve.

“How to stitch” makes a virtual sample more reliable
and looks like a real one. The challenge is to ensure move-
ment consistency and continuity. The meta-movements used
by SVSG were collected in different environmental and
physical conditions. If we directly stitch them together, the
generated virtual samples will lack consistency due to their
different signal states, such as the energy level. Therefore,
SVSG adjusts the signal energy to the same level to rebuild
the spatial continuity. Since the body movements are often
at low-speed, SVSG calculates the average energy of the ad-
jacent samples’ low-frequency components. Then it uses the
equation, Sl =

ρl

ρp
× Sp, to balance the two samples’ energy

level. Sp and Sl indicates the previous and the later samples.
ρp and ρl are the average energy of the low-frequency
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The Pearson correlation coefficient of these two distributions is 0.98.

Fig. 4: Similarity between real and virtual samples

components of Sp and Sl. Accounting for the movement
continuity, SVSG should compensate the inevitable transi-
tional movements to improve reliability. For example, SVSG
needs to simulate the movements from standing to a plank
position when generating a virtual sample of Jump⊕Push-
Up. Fortunately, the inevitable transitional movements can
be simulated by some meta-movements, e.g., the jump and
push-up are connected by a squat and a leg-thrust.

To validate the reliability of SVSG, we first introduce the
structural similarity (SSIM) [27] to quantify the similarity
between movement samples. Then, we conducted an exper-
iment to evaluate the overall performance of SVSG from a
statistical view.

Since the samples are in the format of spectrogram
which can be regarded as gray-scale images, we introduce
leveraging the image-oriented metric, SSIM, to calculate
the similarity between samples. SSIM is a widely used
metric that models the similarity of images as the combi-
nation of brightness, contrast, and structural information.
SSIM(x, y) =

(2µxµy+c1)(2µxy+c2)
(µ2

x+µ2
y+c1)(µ2

x+µ2
y+c2)

, where x and y are
the spectrogram of two samples, µ and σ indicate the mean
value and standard deviation. The value of SSIM ranges
from −1 to 1. When x and y are the same, SSIM(x, y) is
equal to 1.

An empirical experiment was conducted to evaluate the
overall performance of SVSG. The key idea is that we will
get two close SSIM values if comparing two similar samples
(x1 and x1) to another one. Therefore, we calculated two
SSIM distributions: virtual-to-real Dv2r and real-to-real Dr2r .
Dv2r should be similar to Dr2r if the data generated by
SVSG is reliable.

Specifically, we obtained Dv2r by repeating the following
steps 1000 times: (i) generating a virtual sample according to
the movement table randomly, (ii) selecting a random sam-
ple of the same type in the real dataset, and (iii) computing
the SSIM value of them. Then, we replaced the first step
with selecting a random real-sample and calculated Dr2r in
a similar way.

The similarity distributions of eleven combination move-
ments are shown in Fig. 4. The distribution of virtual-to-
real is similar to the real-to-real’s distribution. The Pearson
correlation coefficient of these two distributions is up to
0.98, indicating that the virtual samples generated by SVSG
are close to the real ones. In addition, we observed that CM6,
CM10, and CM11 have the lowest similarity among the com-
bination movements. The reason is due to the instability of
physical movements. These combination movements consist
of more than three meta-movements, which brings more
difficulties to people keeping a stable performance.

Fig. 5: A dynamic fragmentation example of CM1

3.3 Movement Recognition

This section introduces how InFit recognizes combination
movements. First, it leverages a dynamic fragmentation
method to convert the spectrogram into “images” sequences
of the same size. Then, InFit trains a simple neural network
for session detection, separating fitness sessions from other
unknown activities. Finally, the detected session will be sent
to train the 2-stage deep neural network for combination
movement recognition.

3.3.1 Dynamic Fragmentation
InFit designs a speed-based structuring method named dy-
namic fragmentation with no ambiguity in the transition
states. Traditional methods, like DeepSense [20] and EI [21],
divide the data into size fixed pieces by a predefined sliding
window and stride length. A fragment at the transition state
may have the features of the two adjacent meta-movements.
As a result, it creates a blurred boundary between two
meta-movements, which influences the assessment quality.
Thereby, InFit proposes dynamic fragmentation to remove
this ambiguity based on the speed change rule of the transi-
tion states.

As prior works [4], [10] found that each meta-movement
consisted of a retraction part and an extension part. For
example, when doing leg-up, a man begins with an ab-
dominal contraction to lift his legs to the final position
(vertical to the ground) in the retraction part. Then, the legs
fall to their initial places with abdominal relaxation in the
extension part. We observe that all the movement states
have the same speed trend: beginning with an ascending
speed and ending with a descending speed. This trend also
exists in the distorted meta-movements within combination
movements.Theoretically, there are two peaks and three val-
leys on the NA-PSD curve of a meta-movement. The peaks
divide a meta-movement into two retraction and extension
states. Then, we can easily find the transition times among
meta-movements according to the sequence of movement
states.

In fact, a meta-movement usually matches more than
two segments due to the instability of human motions.
Fig. 5 demonstrates the dynamic fragmentation result of a
CM1, the concatenation of one leg-up and one v-crunch.
The valleys marked as V i are the temporal boundaries of
the fragments Fi. V 1 and V 11 indicate the initial posi-
tions of leg-up and v-crunch, V 4 and V 8 indicate their
final positions. V 7 indicates the transition state between
these two meta-movements. The NA-PSD curve still re-
flects the speed trend that begins with an ascending speed
and ends with a descending speed in each part, though
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Fig. 6: 2-stage Combination Movement Recognition Model. The first stage’s tasks are meta-movement classification and
their states detection. The second stage is combination movement classification.

movement instability causes some fluctuations. Although
dynamic fragmentation cannot ensure the ideal case that
divides every meta-movement into two fragments, it can
still remove the ambiguity at the transition states. The
movement instability brings another problem that the length
of the segment sequence is variable. It is difficult to identify
the movement states based on some simple rules or models.
Therefore, we leverage a recurrent neural network to learn
the temporal dependencies among fragments and classify
them into retraction and extension classes.

The last problem before feeding data to the recognition
models is how to convert the segments into a structured
size. As the recognition model utilizes CNN to extract
segments’ features automatically, the segments should be
structured. We made a statistic on the duration time of the
fragments. The result shows that 95% of the fragments are
shorter than 0.25s. Therefore, we scale the segments to 0.25s
by interpolation and downsampling.

3.3.2 Session Detection
Session detection aims at separating fitness sessions from
other unknown activities. Prior works [4], [10] realize ac-
cording to the number of repetitions patterns. Specifically,
they utilize a predefined sliding window with size of 8s to
calculate the auto-correlation curves and count the peaks on
the curves to obtain the repetition number. If the repetition
number is more than 3, a fitness session exists.

However, it may not work to recognize the fitness ses-
sions of combination movements. It is difficult to determine
the sliding window size due to the high dynamic charac-
teristic. For example, the duration of three continuous leg-
ups is about 6s, while the duration of of three combination
movements (Leg-Up ⊕ V-Crunch lasts over 12s. Hence, the
prior works can detect meta-movement sessions but fail to
detect the combination movement sessions. To overcome
this problem, we consider session detection as a sequence-
to-sequence classification task without predefined sliding
windows. We stack one layer CNN with one layer BRNN to
learn spatiotemporal features among the segments and clas-
sify them into three classes: unknown movements, fitness
sessions, and static states out of the sessions. The session
detection model has a similar structure to the first stage of
the 2-stage combination movement recognition model, and
we train it individually.

3.3.3 2-stage Combination Movement Recognition Model

Fig. 6 shows the structure of the 2-stage combination
movement recognition model. In the first stage, the model
leverages CNN for feature extraction and is stacked with
two BRNN for meta-movement classification (BRNN4MM)
and state detection (BRNN4SD). Finally, the outputs of
BRNN4MM and BRNN4SD will be concatenated as the
input of the BRNN for combination movement classification
(BRNN4CM) in the second stage.

CNN for feature extraction. InFit leverages a convolu-
tional layer to extract the features of the fragments automat-
ically. The convolutional layer has 4 kernels, of which the
size is 1 × 1, and the stride is set to 3 × 1. A batch norm
layer is used to normalize the mean and variance of the
kernels outputs. Then, a max-pooling operation is used to
improve the stability of extracted features and reduce the
dimensions. The size of the pooling window is 2, and the
stride length is set to 2. The outputs of the max-pooling
layer will be flattened and fed in the next BRNN.

BRNN4MM. It is difficult to identify a fragment to
which meta-movement belongs only based on the features
extracted from CNN. A segment reflects the short-term
(0.25s) moving speeds of the body parts. Different move-
ments may have some similar segments. Therefore, InFit
needs to combine the temporal dependencies between the
fragments with their speed features for fragment identifica-
tion.

InFit adopts BRNN to learn the temporal dependencies
between fragments. Compared with the conventional RNN
only using the previous context, BRNN leverages both
the previous and future contexts to improve recognition
performance. The BRNN has only one BRNN layer with
128 Bidirectional Long Short-Term Memory (BiLSTM) nodes.
The output of BRNN4MM is a probabilistic matrix with
size of N × M , where M is meta-movement class number
plus static interval, and N is the fragment sequence length.
We set cross-entropy loss to train BRNN4MM as LM =∑N

i=1

∑M
j=1 yij log ȳij + ΩM . ΩM penalizes the estimations

when they are overconfident [28], and its formulation is∑N
i=1

∑M
j=1 (log ȳij + log (1− ȳij)).

BRNN4SD. Except for recognizing the type of meta-
movement, detecting the start and end time of a meta-
movement is necessary for combination movement decom-
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TABLE 1: MOVEMENT TABLE

Movement Class Composition Movement Class Composition Movement Class Composition
MM1 Leg-Up MM7 Jump CM6 Squat ⊕ Jump
MM2 Sit-Up CM1 Leg-Up ⊕ V-Crunch CM7 Squat ⊖ (Leg-Thrust ⊖ Push-Up) ⊕ Jump
MM3 V-Crunch CM2 Sit-Up ⊕ V-Crunch CM8 Leg-Up ⊕ Leg-Up ⊕ V-Crunch
MM4 Squat CM3 Leg-Up ⊕ Sit-Up ⊕ V-Crunch CM9 Leg-Up ⊕ Leg-Up ⊕ Leg-Up ⊕ V-Crunch
MM5 Leg-Thrust CM4 Squat ⊖ Leg-Thrust CM10 Jump ⊕ Jump ⊕ Squat
MM6 Push-Up CM5 Squat ⊖ (Leg-Thrust ⊖ Push-Up) CM11 Jump ⊕ Jump ⊕ Jump ⊕ Squat

position. To successfully decompose combination move-
ments can help InFit provide fine-grain analysis of fitness
sessions and tell users how are their exercise quality. How-
ever, it is non-trivial to detect the start or end time of the
meta-movements within combination movements due to the
compound characteristic.

Traditional methods detect the movement according to
a specific movement state, such as a pause or a prede-
fined movement. It is not work in combination movement
recognition because the transition states between meta-
movements are not as straightforward as static pauses.
Hence, we need to find a more general rule describing
the transition states. Fortunately, meta-movements usually
consist of two reversed movement states: retraction and ex-
tension [4], [10], and we find a common speed change trend
in these states: ascending at the beginning and descending
before entering the next part.

These observations can help us decompose the combina-
tion movement without clear transition states. We regard
state detection as a sequential-to-sequential classification
problem and classify the segments into three classes, e.g.,
static pauses between combination movements, retractions,
and extensions. Similar to the BRNN4MM, a BRNN is
stacked on the CNN. The BRNN has one BiLSTM layer with
128 nodes. During the training phase, the loss function is
LS =

∑N
i=1

∑S
j=1 yij log ȳij + ΩS . S, N , and ΩS are the

number of target classes, the length of segment sequences,
and the penalty avoiding overfitting.

BRNN4CM. In theory, we can easily infer the com-
bination movement if knowing the sequences of meta-
movement types and their states. Therefore, the outputs of
BRNN4MM and BRNN4SD will be concatenated to form the
inputs of BRNN4CM (the inputs are probabilistic matrices
with size of (M + S) × N ). However, we find some noises
in the input sequence due to the errors of BRNN4MM
and BRNN4CM. Taking the meta-movement V-crunch as
example, volunteers may occasionally lift their torsos a
quarter second later than the legs, and then, the movement
will finished as a V-Crunch. In this case, some fragments
at the beginning might be mistaken for Leg-Up. We regard
these mistaken fragments as the noises in the outputs of
BRNN4MM and BRNN4SD.

Hence, we add a dropout layer imitating the noise in
the inputs to improve the robustness of BRNN4CM. The
dropout rate is set to 0.5. Then, a BiLSTM layer with
100 hidden nodes is set to recognize the combination
movements. The loss function of BRNN4CM is LC =∑N

i=1

∑C
j=1 yij log ȳij + ΩC , where C is the class number

of combination movements plus static interval.
Finally, we fine-tune BRNN4MM, BRNN4SD, and

BRNN4CM together. The total loss is LT = αLM + βLS +

γLC , where α, β, and γ are predefined hyperparameters to
adjust the contributions. Empirically, we set them to 1 in this
work.

4 EVALUATIONS

This section evaluates InFit from multiple aspects. It first
introduces the experimental setup and three evaluation met-
rics. Then, InFit is evaluated from two aspects: micro and
macro. The micro-evaluation part evaluates InFit’s overall
performance on different movements and the effectiveness
of SVSG, and the macro-evaluation part discusses the ro-
bustness. Finally, we describe how InFit assesses the exercise
quality.

4.1 Experimental Setup

This section first clarifies the settings of hardware and op-
eration system, environments, movements, data collection,
volunteers. Then, the workflow of training and inference is
illustrated to help understand the evaluations on the sub-
tasks of session detection, meta-movement classification,
state detection, and combination movement classification.
At last, we describe the baselines selected for comparison.

Hardware and operation system. We used a Think-
Centre E75s as a transmitter. It used an Intel 5300 NIC
linked with one 6dBi omnidirectional antenna to send Wi-Fi
signals. A laptop Thinkpad X200 equipped with an Intel
5300 NIC was used to work as the receiver, and it had
three antennas. The operating system was Ubuntu 14.04. We
used the tool proposed by Halperin et al. [24] to extract CSI
measurements. InFit worked on Channel 36 at 5GHz, and
the sampling rate is 1000Hz. We leveraged a laptop with
an NVIDIA GeForce RTX3060 Laptop GPU to train the Deep
Neural Network (DNN)-based models.

Environment. We conducted experiments in two differ-
ent environments. The first place is a spacious exhibition
hall of which the size is 15× 10m2. Since people rarely use
the exhibition hall, the layout of the furniture is stable dur-
ing data collection. The second place is a dormitory room
which size is about 7×3m2. There are many objects, causing
a serious multipath effect. Moreover, only one student in the
dormitory room was selected as a volunteer. His roommates
had neither been involved in the experiment nor been asked
to restrain their behavior from keeping a good environment
for our experiment. As a result, the layout of the dormitory
room was dynamic.

Movements. We set 18 target movements, including 7
meta-movements and 11 combination movements, as shown
in Table 1. The combination movements derive from the
meta-movements in different composition ways. CM1, CM2,
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CM3, and CM6 derive from the meta-movements by con-
catenation. CM4 and CM5 are the insertion results of mul-
tiple meta-movements. CM7 consists of MM4, MM5, MM6,
and MM7 in a fusion way. To observe whether InFit will
mistake continued repetitions as a single one, we set CM8
and CM9. In addition, we set CM10 and CM11 to evaluate
the influence of composition order.

TABLE 2: FITNESS LEVEL OF USERS

Fitness Level User ID
Master U2, U7, U8, U15, U16, U18
Normal U1, U5, U9, U10, U11, U12, U13, U14, U19
Novice U3, U4, U6, U17, U20

Volunteers. We invited 20 volunteers to help us evaluate
the impact of user diversity. Their heights ranged from
165cm to 180cm, and the weights ranged from 60kg to
80kg. The volunteers can be classified into three groups
at different fitness levels, as listed in Table 2. The masters
took at least one week to practice the target movements.
The normal level volunteers are only familiar with some
meta-movements and have workout habits in daily life. The
novice ones have no workout habits and feel difficult to
accomplish some combination movements.

Data Collection. Every volunteer was asked to provide
a “cycle” of data at each time. A data collection cycle
contains 18 fitness sessions, including 7 meta-movement
sessions and 11 combination movement sessions. At the
beginning of a fitness session, a volunteer moved randomly
and did random activities such as stretching and playing
on a smartphone for 10 to 30 seconds. Then, the volunteer
moved to the target place and waited about 10 seconds.
Next, the volunteer repeated a target movement 10 times.
After that, the volunteer kept static for about 10 seconds,
followed by other daily activities lasting 10 seconds.

Each session has four label sequences related to the four
sub-tasks. Labels of session detection classify the fragments
into three classes: unknown movements, static states, and
fitness activities. Labels of meta-movement classification catego-
rize the fragments into eight classes: seven meta-movement
and intervals among movements. Labels of state detection
divide the fragments into three classes: extension, retrac-
tion, and intervals among movements. Labels of combination
movement classification classify the fragments into nineteen
classes: eighteen target movements and intervals among
movements. These label sequences have the same length
as the number of fragments generated by the dynamic
fragmentation.

We utilized a camera to record movements in paral-
lel with the wireless devices. The start and end times
of meta-movements, including those within combination
movements, were marked manually according to the videos.
Then, we used a script to automatically generate the label
sequences for session detection, meta-movement classifica-
tion, and combination movement classification according
to the movement tables. Next, we leveraged NA-PSD to
determine the final position of meta-movements like the
way to determine the insertion place in Section 3.2. The part
before the final position is labeled retraction, and the latter
one is the extension.

Workflow of training and inference. In the training
phase, we first trained a session detection model that can
separate fitness sessions from daily activities. Then, we fil-
tered the unknown movements out and built a new training
dataset augmented by SVSG. Finally, we train the 2-stage
combination movement recognition model in three steps:
a) Training BRNN4MM and BRNN4SD in the first stage,
respectively, b) Training the BRNN4CM in the second stage,
and c) Fine-tuning the whole model.

In the inference phase, InFit first leveraged the session
detection model to separate fitness sessions from other un-
known activities. Then, InFit leveraged the 2-stage combina-
tion movement recognition model for meta-movement class
sequence, state class sequence, and combination movement
class sequence. From the outputs, InFit can know what type
the movements are in a fitness session, how many times
the user repeats, and how long each repetition lasts. Finally,
InFit made a further step to assess the exercise quality of the
session.

Baseline. We selected the work of Guo et al. [10] (FA),
DeepSense [20], and EI [21] as baselines:

FA was a Wi-Fi-based fitness assistant designed for meta-
movement recognition. This system used a thresholding-
based method for segmentation. Then, it manually extracted
features from the segments and designed a two-layer DNN
for movement recognition.

DeepSense regarded activity recognition as a sequence-to-
sequence classification problem. It cut the received signals
into frames with a fixed size. Then, DeepSense adopted an
autoencoder to compress those frames and a CNN to extract
the discriminative features of each frame. Finally, an LSTM
was applied to learn the temporal dependencies between
frames for activity recognition.

EI also converted the received signals into sequences of
frames. For an environment-independent system, it lever-
aged a CNN for activity recognition and a domain discrim-
inator to recognize the environment. In this paper, we used
the activity recognizer (the CNN) for comparison to observe
the recognition performance only with learning the spatial
features.

4.2 Evaluation Metrics
We evaluate the performance of InFit by F1-Score and count-
ing score and discuss the effectiveness of data augmentation
by the gain of svsg:

F1-Score. We use F1-Score to evaluate the accuracy of
movement recognition: F = 2 × precision×recall

precision+recall . precision
is NT

NT+N ′
T

, indicating the confidence that a fragment can
be recognized correctly. NT is the number of fragments
being recognized correctly. N ′

T is the number of fragments
belonging to other classes but mistaken as the target class.
recall = NT

N is the probability of a fragment that can be
recognized correctly. N is the total number of the fragment
belonging to the target class.

Counting Score. Fitness assistance needs to count the
number of fitness movements accurately. We can obtain
the movement rate, which is the repetitions per minute,
by calculating the quotient of the movement numbers and
the related duration time. Then, it is possible to esti-
mate the real power consumption according to movement
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Fig. 7: Confusion matrix of movement recognition

types and rates. To evaluate the performance of move-
ment counting, we define the counting score calculated as
C = 1− ( 1

Ns

∑Ns

i=1 |n̄i − ni|). Ns is the number of samples,
ni is the true movement number of the i-th sample, and n̄i

is the number of detected movements. 1
Ns

∑Ns

i=1 |n̄i − ni| in-
dicates the probability of the occurrence of counting errors.
If the counting error is 0, C has the max value of 1. If the
counting error occurred too much, C will be close to 0 and
even be a negative number.

Gain of SVSG. This work utilizes virtual samples to
emphasize the performance of InFit. The question is what
conditions must the number of virtual samples meet to have
a positive impact on InFit. Too few samples make a slight
contribution to InFit, while too many virtual samples can
make InFit overfitting. Hence, we quantify SVSG-related
enhancement through the gain of SVSG to help us figure
out the optimal numbers of virtual samples. For a certain
movement, let FS represents the F1-Score of the condition
that SVSG augmented the dataset, and F represents the
condition without data augmentation. The gain (G) of SVSG
is G = (FS − F )/F .

4.3 Micro-evaluation

In this section, we first evaluate the overall performance on
different movements. Then, we discuss the generalization
ability of SVSG by evaluating the enhancement on the sub-
tasks and the baselines.

4.3.1 Overall Performance
The first user was asked to provide 10 cycles in the dormi-
tory room. Four cycles of data were selected to construct
the training set, and four cycles of virtual combination
movements were generated for data augmentation. Next,
we selected three cycles of real data for cross-validation and
the remained data for testing.
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Fig. 7 illustrates the confusion matrix of the 18 target
movements. InFit has an average accuracy above 90% on
movement recognition. Specifically, the average accuracy
of combination movement recognition is 94%, higher than
the average accuracy of meta-movement 84%. It indicates
that the BRNN4CM is robust to the inferences error of
BRNN4MM and BRNN4SD. MM2 has a probability of 28%
to be mistaken as CM2, and 22% of MM5s are mistaken as
CM4. The reason may be due the same features shared by
them since CM4 consists of MM4 and MM5.

CM9 is the concatenation of three MM1 and one MM3,
and it also the concatenation of a MM1 and CM8. Therefore,
InFit mistakes 17% CM9 as CM8 and 5% as MM1. It turns
out to be that the continued repetitions may be recognize a
single one. We can introduce other methods like peak de-
tection to improve the accuracy of recognizing such combi-
nation movements with repetitions. The accuracies of CM6,
CM10, and CM11 are close to 100%. It indicates that InFit
can successfully distinguish the combination movements
consisting of the same meta-movements in different orders.

Fig. 8 shows the counting score of different movements.
The counting score distribution is similar to the recog-
nition accuracy distribution since InFit doesn’t count the
movement when it is mistaken. This counting score can be
improved through some simple calibration method. For ex-
ample, in a short period, the repetitions belong to the same
movement. Therefore, we can introduce a time window to
help count the number.

4.3.2 SVSG’s Performance on Sub-tasks

To evaluate the improvement brought by SVSG, we compare
the performance on four sub-tasks under the conditions
with different sizes of training sets. The third user was asked
to provide ten cycles of data collected in the exhibition hall.
The dataset was randomly divided into three parts for train-
ing, cross-validation, and testing in a ratio of 4:3:4. We gen-
erated four cycles of virtual combination movements from
the training data to build different training sets. The training
sets can be described as X ×CycleReal + Y ×CycleV irtual.
Both X and Y are in the set of 0, 1, 2, 3, 4.

As shown in Fig. 9, each column shows the F1-Score,
counting score, and gain of SVSG of a sub-tasks. For sub-
tasks of the session and state detection, the F1-Score can
stay above 0.75 even without the enhancement of SVSG.
Under the enhancement of SVSG, the F1-Score can exceed
0.9, and the counting score will ascend to 0.9. Surprisingly,
InFit achieves comparable performance on these sub-tasks
only with the help of virtual samples.

The results of meta-movement classification and combi-
nation movement classification have a similar trend. Their
performance increases with the growth of data volume.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3209656

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 11,2023 at 14:08:42 UTC from IEEE Xplore.  Restrictions apply. 



10

Fig. 9: Enhancement on the sub-tasks by SVSG. “Meta-movement Classification” and “Combination movement Classifica-
tion” are written in a shorter format due to the limit of drawing space.
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Fig. 10: Baseline comparison and SVSG’s generality

With the increase of virtual samples, the recognition accu-
racy and counting score increased more than 0.4. The gain
of SVSG shows that these tasks benefit from the virtual
samples much more than the other two sub-tasks. The
reason is that virtual combination movements aim at pro-
viding sufficient knowledge about how meta-movements
compose to combination movements, which makes limited
contributions to session detection and state detection.

In summary, SVSG can enhance InFit in all the sensing
tasks, and it reveals an opportunity for zero-effort combina-
tion movement recognition.

4.3.3 SVSG’s Performance on the Baselines
In this section, we compared InFit with the baselines under
the conditions with different volumes of virtual samples. We
reused the datasets mentioned in the previous section. The

cycle number of virtual sample was set ranging from 0 to 4.
The sliding window of DeepSense and EI was set to 0.25s
with no overlap.

As shown in Fig. 10a, the recognition accuracies of the
four systems are proportional to the virtual sample cycles.
InFit outperforms Deepsense, EI, and FA by 0.13, 0.4, and
0.1 in movement recognition when the virtual sample cycle
is 4. Since CNN cannot learn the temporal dependencies
between frames, EI has the lowest combination movement
recognition accuracy among the baselines. The ascending
trend also exists in movement detection, as shown in
Fig. 10b. The detection accuracy EI has been significantly
improved thanks to the sufficient information about the
difference between moving and static states provided by
the virtual samples. We should notice that SVSG does not
contribute to FA on movement detection because FA uses
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Fig. 11: Performance on different environments and distance

a simple threshold-based segmentation method. Fig. 10c
shows that three systems have at least 0.08 improvement
when there are four cycles of virtual samples. In sum-
mary, SVSG provides a general enhancement of combination
movement recognition on all systems, and InFit gains the
most benefits.

4.4 Macro-evaluation
This section first evaluates the robustness of InFit in dif-
ferent conditions, including the changes of environments,
distances and directions to the devices, self-angle, and user
diversity. In these experiments, a collection cycle includes
the data of five movements, including MM1, MM2, MM3,
CM1, and CM2.

In each experiment, we compared the results of three
tests for evaluation. The first test was named “baseline”
that we trained and tested local models under different
conditions. The second test was named “zero-knowledge”
observing the local models’ performance in different condi-
tions. The “SVSG” test was to observe the cross-condition
performance when the local models were enhanced by
SVSG. Every local model was fine-tuned by four cycles of
virtual samples derived from the meta-movements in dif-
ferent conditions. The results of baseline, zero-knowledge,
and SVSG are represented by the blue, black, and red bars
in Fig. 11, respectively.

4.4.1 Impact of Environment Changes
Theoretically, InFit should have stable performance in differ-
ent environments since it has filtered out the environmental
noise. We asked a volunteer to provide 10 cycles of data
in each environment as shown in Fig. 11a. Four cycles
were used for training, three cycles were used for cross-
validation, and the remained four cycles were testing data.
As shown in Fig. 11c, the results of three test achieve an
average accuracy higher than 0.8 in both conditions. It
means that the preprocessing method has greatly reduced
the impact of different environments.

4.4.2 Impact of Distance Changes
According to the free space propagation mode, like Friis
mode, the received signal strength is inversely proportional
to the propagation distance. When the distance increases,
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Fig. 12: Performance on different directions and self-angles

the power of the received signals will decrease due to signal
attenuation, resulting in a descending trend of recognition
accuracy. To evaluate the impact of different distances be-
tween the user and devices, we conducted three tests on
three different distance conditions. As shown in Fig. 11b,
the locations were vertical to the connection line between
the transmitter and receiver. The distances between the
locations to the connection line range from 1.0m and 2.0m.

Fig. 11d illustrates the recognition accuracies under dif-
ferent distances. We observe that the baseline test has an
average accuracy higher than 0.9 and an ascending trend
within 2.0m. This ascending trend does not conflict with
common sense that the recognition accuracy is inversely
proportional to the distance due to signal attenuation.
Within a certain distance, the strength of received motion-
induced signals is strong enough, and signal attenuation
has little influence. While for the systems that recognize
movement based on the velocity features extracted from
the motion-induced Doppler Frequency Shift (DFS), the DFS-
based velocity estimation accuracy will have stronger influ-
ence. The more accurate the velocity estimation is, the better
the recognition performance is. Theoretically, the velocity
estimation accuracy is proportional to the distance. We refer
the reader to the work proposed by Niu et al. [29] for a
detailed analysis.

Compared with the baseline test, the result of zero-
knowledge test are below 0.6. It means that InFit is sensi-
tive to distance changes. Fortunately, the accuracy can be
improved if the training set includes a small volume of the
data collected under other conditions according to the result
of SVSG test.

4.4.3 Impact of Direction Changes

Fig. 12a illustrates the different conditions of direction,
including 60◦, 90◦, and 120◦. These three places are 1m
away from the mid-point on the connection line between
the transceivers. The volunteer at each place was asked
to provide ten cycles of data and face the midpoint when
exercising. Also, the datasets was divided into three sets for
training, cross-validation, and testing.

The results of three tests are shown in Fig. 12c. The
accuracies of the baseline test stay all above 0.85. It means
that the motion-induce signals are distinguishable when the
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Fig. 13: Impact of user diversity

direction changes since the signals have similar SNR. How-
ever, the movements will induce different signal patterns.
As shown by the result of zero-knowledge test, the accuracy
may decline more than 0.4 compared with baseline. This
degradation can be avoided if the user can provide a small
volume of meta-movements in new directions.

4.4.4 Impact of Self-angle Changes

We further evaluated the impact of the self-angle. When
people change self-angles, the same movement may cause
different frequency offsets. As shown in Fig. 12b, the volun-
teer was asked to stay at the given place. There were three
self-angle conditions, including 90◦, 45◦, and 0◦. The arrows
represent the direction where the user faces.

As shown by the blue bars in Fig. 12d, the baseline has
a stable accuracy higher than 0.8, indicating distinguishable
signal patterns of different movements. According to the
result of the zero-knowledge test, the self-angle impacts the
motion-induced signal patterns. Also, InFit can be more ro-
bust to self-angle change by learning the knowledge under
different conditions.

4.4.5 Impact of User Diversity

To evaluate the impact of user diversity, we conducted
three tests on 20 volunteers. Every volunteer was asked to
provide 10 cycles of data collected in the exhibition hall.
Training data, cross-validation data, and testing data were
in a ratio of 4:3:4. As shown in Fig. 13, for the result of
the zero-knowledge test, InFit’s performance will descend
if directly apply it to recognize different users’ movements.
Fortunately, InFit can avoid this degradation by leveraging
SVSG to augment training datasets. It learned the personal
characteristics from the virtual samples derived from the
meta-movements of other persons.

Besides, we notice that the average accuracy of the
baseline tests is 0.87. The standard deviation is 0.08, which
means that the accuracy varies a lot given different users.
The reason underlies user diversity caused by movement
proficiency. Accordingly, we calculated the average accura-
cies of the user at different fitness levels listed in Table 2. The
average accuracies of the master, normal, and novice groups
are 0.92, 0.87, and 0.77, respectively. Persons with rich
fitness experience could be easier to keep every movement
in a standard rhythm and intensity. Thus, the training and
test datasets proposed by the masters have closer feature
distributions compared with the datasets of the other two
groups. In general, InFit can quickly learn the representative
features of experienced users’ movements and achieve a
good recognition performance. In contrast, it requires more

training data for the users with unstable movement pat-
terns. Improving the robustness of user diversity is beyond
the scope of this study and is left for future work.

4.4.6 System Overhead
Storage overhead: InFit is the first wireless-based fitness
assistant system designed for combination movements. Its
SVSG method can significantly reduce the storage over-
heads of combination movements. For the on-site appli-
cation scenarios, InFit should have lower or comparable
overheads compared to the state-of-the-art on meta-motion
recognition tasks and show greater advantages on combi-
nation motion recognition tasks. We selected FA [10] as
a comparison to evaluate InFit’s storage costs on meta-
movement recognition tasks. To recognize the 7 meta-
movements described in Table 1, InFit and FA need 22MB
and 7MB of memory to store their training data. Although
InFit has a higher storage overhead, it is lightweight enough
for commercial-off-the-shelf (COTS) intelligent devices such
as smartphones and smart speakers. Then, we added the
11 combination movements to the recognition task. InFit’s
storage overhead only increases 3MB. This result implies
that InFit’s storage cost does not change significantly as long
as the type of the meta action does not increase when the
number of combination movements is increased.

Training time: We repeated the training phase 5 times
to measure the average training time of the DNN-based
models described in Section 4.1: the session detection model
and the 2-stage combination movement recognition model.
In each training phase, we set the training epoch to 50,
and the learning rate was initialized to 0.003. For only
the meta-movement recognition tasks, the session detection
model needed 4 seconds for training. The 2-stage combi-
nation movement recognition model required 6.8 seconds,
the sum training time of three components: BRNN4MM
(2.6 seconds), BRNN4SD (2.7 seconds), and BRNN4CM (1.5
seconds). InFit took about 11 seconds to train its DNN-
based models, much quicker than FA’s training time, 77
seconds. The reason is that InFit divides the recognition task
into multiple sub-tasks, which can limit the search space of
parameters and reduce the computation complexity. After
adding the combination movements, InFit took 11 and 20
seconds to train the two DNN-based models, indicating
that InFit can be updated frequently to overcome accuracy
reduction brought by the changes in user habits.

Runtime latency: InFit should show the assessment at
least in soft real-time such that users can adjust their posture
in time. We measured the average runtime latency of getting
a report after finishing a fitness session to evaluate the
potential of applying InFit to real-time application scenarios.
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Fig. 14: Intensity of 10 CM1 repetitions across three volunteers

Fig. 15: Duration of 10 CM1 Repetitions Fig. 16: Continuity of different sessions Fig. 17: Smoothness of different sessions

Specifically, we repeated the following steps 10 times: i)
selected 10 random samples per movement, ii) intercepted
60 seconds of each sample, iii) test the latency of the inter-
cepted samples, and iv) record the latency. Given a session
lasting 60 seconds, the average latency is 4.077 seconds.
After finishing a fitness session, a user usually takes a rest
lasting more than 10 seconds, much longer than the runtime
latency, demonstrating InFit’s potential to meet the soft real-
time requirement.

4.5 Fitness Assessment
Fitness assessment can tell how the completion quality of a
fitness session is. Thus, users can adjust their movements
based on the feedback of InFit. High completion quality
means a low risk of injury and high exercise efficiency. This
section demonstrates how InFit describes the completion
quality. Specifically, according to the prior works [4], [10],
[16], we first introduce four metrics to assess a fitness session
from two perspectives, e.g., local effects and global effects.
Then, we compare three volunteers at different levels to
show the assessment results.

4.5.1 Local Effects
Local effects, including intensity and duration, describe the
exercise quality of each repetition. Intensity reflects the
energy expended of a repetition. Prior works define the
balance indicator (BI) to reflect the intensity. Let Ir and Ie
be the energy of retraction and extension, BI = α − Ie/Ir ,
where α is the standard value of Ie/Ir. Thus, if BI is
negative, a meta-movement may have an excessive intensity
of retraction. Or, the extension part may have an excessive
intensity when BI is positive. However, we cannot directly
introduce this indicator to describe the intensity of combina-
tion movements since it has many movement states. In order
to describe combination movements’ intensity, we leverage
a BI vector BI = (BI1, BI2, . . . , BIm−1, where m is the
number of movement states within a combination move-
ment and BIi = αi − Ii+1/Ii, indicating the energy balance

between two adjacent movement states. Ii is the integral
of the corresponding NA-PSD curve. Duration reflects the
time spent on each repetition. If a repetition has a shorter
duration than the standard, the user may have performed a
fierce action, increasing the risk of injury. On the other hand,
too long duration may be caused by inefficient exercise. We
introduce a duration indicator (DI) DI = d − τ , where d is
the time spent on a repetition, and τ is the standard value.

4.5.2 Global Effects
Global effects, including continuity and smoothness, describe
the overall quality of a fitness session. Continuity describes
the consistency of the intervals between repetitions in a
fitness session. For efficient training, the exercise should
have reasonable movement rhythm control. To evaluate
the quality of rhythm control, we adopt the kurtosis of
intervals’ duration as a metric. Let R = {ri}ki=1 be the set of
intervals’ duration within a fitness session. The continuity is
CI = Kurt({ri}ki=1) =

∑k
i=1 (ri−µ)4

(
∑k

i=1 (ri−µ)2)2
−3 = µ4

σ4−3, where µ
and σ are the mean and standard deviation of R. The larger
C is, the better continuity a fitness session has. Smoothness
reflects the consistency of the repetitions within a fitness ses-
sion. The user should try to keep the repetitions’ intensity as
similar as possible. Identical to the continuity indicator, we
adopt kurtosis to describe the smoothness. Suppose a ses-
sion has n repetitions, and each repetition has m movement
states. Thus, a repetition’s energy expended can be repre-
sented by (I1, I2, . . . , Im). We calculate the smoothness of
this session as SI = (Kurt(I1),Kurt(I2), . . . ,Kurt(Im)),
where Ii = {I(i, j)}nj=1. A higher value of Kurt(Ii) means
a better smoothness of the combination movement’s corre-
sponding part in this session.

4.5.3 Effect Evaluation
To demonstrate the performance of effect evaluation, we
asked three volunteers, e.g., U2 (master), U5 (normal), and
U6 (novice), at different levels to provide data of five
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movements: MM1, MM2, MM3, CM1, and CM2. The master
has taken days to practice the five movements before this
experiment. The volunteer at the normal level only has
experience in the meta-movements. The novice one has no
habit of daily workouts. For each movement, a volunteer
repeated ten times. We show the exercise quality from local
and global aspects.

Fig. 14 illustrates the intensity of 10 CM1 repetitions
across three volunteers. The colored areas represent the
excessive intensity, and the white space around zero indi-
cates the standard value. The master (shown by the red
lines) has the most stable and standard intensity. The vol-
unteer at the normal level (shown by the blue lines) has
a good performance of BI1. However, it lost stability in
BI2 and BI3 due to the lack of experience in combination
movements. The novice user has the poorest performance
because he can not control his muscles well. As shown in
Fig. 15, the volunteers at master and normal levels have a
relative standard duration similar to the trend of intensity.
The novice user usually fails to maintain a stable duration.

Next, we compared the continuity and smoothness of the
volunteers. Fig. 16 illustrates the continuity, and we utilize
colored areas to separate sessions of different movements.
The master shown by the red line has the best performance.
The volunteer at the normal level (the blue line) has a
medium performance but a better continuity on MM3 than
the master. It is because the normal user has experience in
the meta-movements, making him able to maintain a similar
rhythm to the master even better than him. The novice
one has the poorest performance compared with the above
two volunteers. This trend also exists in the smoothness, as
shown in Fig. 17.

Users can intuitively know their exercise quality through
these figures. According to the local effect, users can see
whether they are in good condition and which parts of the
combination movements need more practice. Then, from
the figures of global effects, they can know whether the
session is in a stable rhythm and whether the repetitions
are performed well.

5 CONCLUSION

InFit is the first attempt to uncover and address the com-
bination gesture recognition with low training costs in the
modern high intensive fitness programs.

A virtual sample generation method, namely, SVSG,
is proposed to reduce the requirement of data collection.
SVSG generates virtual combination movements by stitch-
ing meta-movements together according to the composition
rules, e.g., concatenation and insertion. We propose the 2-
stage combination movement recognition model. It divides
the combination movement recognition task into multiple
sub-tasks to realize fine-grained fitness assessment. Exper-
iments show that InFit achieves the average combination
movement recognition accuracy of 94%. The recognition
accuracy is 40% higher than the state-of-the-arts under the
condition of zero-knowledge. Moreover, SVSG can enhance
all the sub-tasks of InFit and provide a general enhancement
to other schemes designed for similar tasks.

InFit is an initial exploration, and there are many in-
teresting questions left for our future work. For example,

how to improve the robustness of InFit Can we generate
virtual samples to imitate different positions? Maybe we can
remove the requirement of data collection with the help of
other techniques, such as videos and game engines.
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