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ABSTRACT
Neglecting proper oral hygiene has proven to potentially
lead to severe oral disease, resulting in complications over
time. Careful brushing can mitigate the problem, but it is
common for individuals to dedicate insufficient time to the
various areas of their teeth. We propose LiT to monitor the
brushing situation of 16 Bass technique surfaces in real-time.
LiT relies on commercial toothbrushes with blue LEDs as
a transmitter and requires only 2 low-cost photosensors as
receivers on the toothbrush head. However, the transmission
channel of light in the oral cavity is unclear. Finding the
optimal deployment positions and minimizing the number
of photosensors is challenging. To tackle these obstacles, we
design the positioning of the 2 photosensors and create a
transmission model within the oral cavity to verify the feasi-
bility theoretically. Additionally, obstacles in implementation
include separating brushing action accurately, interference
of light on the outer surfaces of front teeth, and individual
variability. To overcome these challenges, we develop cor-
responding technologies and a comprehensive framework.
Experiments with 16 users show that LiT achieves a highly
accurate recognition rate of 95.3% with an error estimate
for brushing duration of 6.1%. Furthermore, LiT also proves
resilient under user motion and environmental interference.
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1 INTRODUCTION
Motivation:Oral diseases like caries and gumdisease caused
by poor oral hygiene are prevalent worldwide, and affect peo-
ple from all age groups [1]. Furthermore, poor oral hygiene
can catalyze various other diseases, including respiratory,
digestive, arthritis, cardiovascular, and kidney disease [2].
Pathogenic bacteria in dental plaque are the primary cause
of these diseases [3, 4]. Fortunately, brushing teeth carefully
in the proper duration can reduce plaque and prevent oral
diseases [5]. Nonetheless, the time spent by ordinary people
brushing on different tooth surfaces is uneven, which leads
to severe negative impacts on oral health [1, 6–10]. For exam-
ple, people spend more time brushing the visible vestibule
and occlusal surface, and less time on the inner and outer
surfaces of the molars or even miss them [6, 7]. Insufficient
brushing can lead to plaque accumulation on some tooth sur-
faces, while excessive brushing can cause damage to gums
and enamel in certain areas. Both scenarios can lead to costly
oral diseases and complications over time [1, 8–11].
Hence, to enhance the users’ tooth-cleaning benefit and

efficiency, various methods for monitoring tooth brushing
have been proposed, including using cameras, microphones,
inertial sensors, and magnetic sensors. Although camera-
based methods [12–14] can determine the orientation of a
toothbrush through external cameras, they are expensive
and impractical to use, especially in low-light conditions and
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raise privacy concerns. Similarly, microphone-based meth-
ods [15–17] are limited in their recognition accuracy and are
adversely affected by environmental noise. Inertial sensor-
based methods [6, 18–20] face accuracy decline from ac-
cumulated drift errors and struggle with user motion and
vibrations. Magnetic sensor-based methods [19, 21] are in-
convenient to deploy and are affected by electromagnetic
interference and user motion. Overall, these methods are lim-
ited by high costs, impractical deployment, low accuracy, and
poor robustness. Therefore, addressing these shortcomings
in toothbrushing is necessary to meet commercialization.
Our Approach: Can a low-cost, easy-to-deploy sensing para-
digm be used for robust and highly accurate toothbrushing
monitoring across various environments and motion con-
ditions? Due to the uniqueness of each oral cavity area, a
more sophisticated lidar would have the capability to track
and monitor the precise location of the toothbrush within
the oral cavity. The blue LED lighting increasingly found
in toothbrushes for bacterial control [22–24] gives us this
opportunity. Because the transmission and reflection of LED
light are distinct due to variations in the mouth’s structure,
a well-placed photosensor would do well to implement this
lidar. As shown in Figure 5, we propose LiT, which adds two
low-cost photosensors to the toothbrush head to monitor the
brushing through the dynamic light intensity change. LiT
is robust since it shields ambient interference, such as light,
sound, and electromagnetic fields, and the user’s motion in-
terference, such as moving and turning the head. Moreover,
it is low-cost and easy to deploy, which is much more accu-
rate than external sensors like cameras, magnetic sensors,
inertial sensors, and microphones.
Challenges and Solution: Although the proposal seems
promising, implementing this concept into an actionable
system should overcome a series of obstacles, such as: (i)
Firstly, the transmission channel of light in the oral cavity is
unclear. The optimal deployment positions and minimizing
the photosensors are significant challenges. We analyzed the
Bass technique’s characteristics, the oral cavity’s structure,
and the toothbrush head’s luminous properties to determine
the deployment positions of the two sensors. A light trans-
mission model was established to verify the feasibility theo-
retically. (ii) Secondly, the overabundant intensity light can
hinder distinguishing the users’ brushing action if we only
use the photosensors. We found a unique character in the
brushing signal with stable periodicity and symmetry to over-
come this challenge. This allows us to identify and segment
the brushing motion accurately. (iii) Thirdly, brushing the
outer surfaces of the front teeth can be disturbed by strong
ambient light. We separated this particular case from the
signal and proposed a compression formula to eliminate the
interference. (iv) Fourth, individual variability among users
produces signal fluctuation. We extracted stable relationship

features between 2 sensor signals to counter instability and
amplify the discrimination of the brushing surfaces.
Summary of Experiment Results: In our evaluation with
16 participants, LiT demonstrated an average recognition
accuracy of 95.3% for 16 Bass technique surfaces, with an
estimated error of brushing duration of 6.1%. The training
model exhibited cross-user versatility and temporal stability.
More importantly, LiT overcomes the robustness of current
brushing monitoring systems. It can be used for both manual
and electric toothbrushes and maintains robust performance
under various light conditions and user motion.
Contributions: We first propose using toothbrush light for
monitoring brushing, extending light-sensing use case to
brushing monitoring. Compared with existing paradigms,
our method has the advantage of shielding from environ-
mental interference and user motion. Then, we build a model
of light propagation in the mouth to reveal the working prin-
ciple and theoretical feasibility. Next, we propose a brushing
signal segmentation algorithm, ambient light interference
cancellation technology, and feature extraction technology
to ensure time-accurate and accurate brushing monitoring.
At last, we deployed LiT and evaluated on 16 users. The re-
sults show LiT has good brushing monitoring capabilities,
cross-user versatility, and temporal stability. LiT can also
be used for manual and electric toothbrushes and maintains
strong performance under various experimental conditions.

2 RELATED WORK
In this section, we review the related literature of LiT.
Oral health approaches. The mobile computing com-

munity has presented mobile health methods related to oral
health to improve oral health behaviors, such as guiding
users with short messages [25, 26], integrating correct brush-
ing posture guiding into the intelligent mirror [27], using
the game-based feedback mechanisms [13, 14, 28], checking
and detecting oral diseases by taking photos from smart-
phones [29, 30], provide health notifications [31, 32], provid-
ing dental plaques number feedback [33], and using social
interaction to motivate users [34].

Toothbrushing monitoring. [19] and [21] respectively
use the magnetic sensor in the wristband or on the wall to
capture the magnetic field generated by the toothbrush’s
built-in magnet and the vibration motor to achieve tooth
brushing monitoring. Still, they are inconvenient to deploy
and vulnerable to user motion and electromagnetic inter-
ference. Playful Toothbrush [12] uses the camera in front
of the user to recognize the special pattern of the tooth-
brush handle. Face tracking is added to reduce false positives
further [14]. However, vision-based methods are relatively
expensive and inconvenient to deploy. Moreover, they can-
not be used in weak light and may cause privacy concerns
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[35]. The microphone of the mobile phone [17] and headset
[15, 16, 36] can be used to distinguish brushing areas. But
microphones can be easily disturbed by noise and cannot be
used with electric toothbrushes [21]. Some studies embed-
ded inertial sensors in toothbrush handles [18], while others
leverage smartwatch inertial sensors for brushing monitor-
ing [6, 19, 20]. However, the accumulation of drift errors
negatively impacts accuracy [37], especially under the influ-
ence of user motion and electric toothbrush vibration [21].
In general, the existing methods suffer from limitations: high
cost, requirement of additional equipment, low accuracy, and
poor robustness against environmental and user motion fac-
tors. In contrast, LiT overcomes these limitations. LiT only
requires the integration of two low-cost photosensors on the
toothbrush head without the need for additional equipment.
Moreover, LiT’s sensors are positioned inside the mouth dur-
ing brushing, which not only keeps the sensors relatively
stable to the user’s mouth regardless of how the user moves,
but also shields ambient light interference. Our innovative
intraoral perception approach is unique compared to prior
methods that involve sensors outside the mouth.
Light perception. Light, as an electromagnetic wave, is

not only used for communication [38–41], but it also plays
a crucial role in ubiquitous sensing. The ceiling lamp after
encoding spatial information can be utilized for indoor posi-
tioning [42–44] and human sensing [45, 46]. The attenuation
of light in air and the reflection and absorption of light by the
hand are used for gesture recognition [47–49], finger track-
ing [50, 51] and identity authentication [52]. The unique
absorption spectra of different substances are used for wine
monitoring [53, 54] and food recognition [55, 56]. Because
the contraction and expansion of blood vessels affect the
absorption of green light by blood, green light is also used to
measure pulse [57], blood oxygen concentration [58], blood
pressure [59, 60] and even identity authentication [61, 62].
In contrast, we first explored the feasibility of using light for
low-cost tooth brushing monitoring and designed and devel-
oped systems with high accuracy and robust performance.

3 BASICS AND HARDWARE DESIGN
3.1 Bass Technique
The Bass technique, recommended by the American Dental
Association (ADA), divides the teeth into 16 surfaces, includ-
ing inner, outer, and occlusal surfaces (Figure 1), for proper
cleaning [63, 64]. Brush strokes, depicted in Figure 2, are cat-
egorized into up-and-down and back-and-forth motions. To
clean the inner and outer surfaces of front teeth and molars,
position the toothbrush at a 45° and use gentle up-and-down
strokes (tooth-wide). For molars’ occlusal surfaces, employ
back-and-forth strokes [65, 66]. Note that strokes should be
parallel to the toothbrush for the inner surfaces of front teeth

and molars’ occlusal surfaces, and perpendicular for other
cases.

3.2 Structure of Oral Cavity
According to Figure 3, the oral cavity comprises various
structures, including lips, cheeks, palate, tongue, gingiva,
and teeth. The front teeth are horizontally arranged at the
front of the oral cavity, while the molars are perpendicular to
the front teeth and situated behind them. The outer surfaces
of the front teeth are connected to the gingiva and covered by
the inner lip. The outer surfaces of the molars are connected
to the gingiva and surrounded by cheeks. The inner surfaces
of the upper teeth are connected to the palate, while the inner
surfaces of the lower teeth are connected to the gingiva and
attached to the tongue. The occlusal surfaces of the molar are
perpendicular to the inner and outer surfaces. Notably, the
upper teeth are wider than the lower teeth, approximately
half the width of the molar (5mm). Through preliminary
analysis, it was found that the spatial characteristics of front
teeth and molars, inner and outer surfaces, occlusal surfaces,
and upper and lower teeth are distinctive. Nevertheless, the
characteristics of the left and rightmolars do not demonstrate
a substantial difference. For instance, the outer surfaces of
the left and right molars are covered by the cheeks.

3.3 Toothbrush Head Luminous Properties
Commercially available blue light toothbrushes deployed 2 to
4 blue light LEDs at the base of the bristles of the toothbrush
head. LEDs’ light is emitted from the surface of the bris-
tles after being reflected and transmitted (refracted) by the
bristles. Since the light emitted from the bristles is close to
the reflective surfaces (e.g., teeth and gum) during brushing,
it cannot be considered as parallel light. We treat the light
emitted from the bristles as a collection of point sources (top
and curved surface of an elliptical cylinder). As the reflection
and refraction inside the bristles are difficult to model, we
observed the luminous properties experimentally. As shown
in Figure 4(a), the photosensor was placed very close to the
bristle surface (3mm) in a parallel position in the dark envi-
ronment, and the entire bristle surface’s luminous properties
were collected by constantly moving the photosensor. As
shown in Figure 4(b), we found that the intensity distribu-
tion of the point source on the top and curved surface was
relatively uniform. Moreover, the light intensity of the point
light source on the top (4661–10693 lux) was significantly
greater than that on the curved surface (1210–1576 lux) due
to less blockage by the bristles. However, when brushing, the
top of the bristles are always against the teeth, so the point
light from the top is blocked. Therefore, the toothbrush light
source can be simplified to a set of point light sources with
uniform light intensity on the curved surface of an elliptic
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Fig. 1. 16 Bass technique
surfaces.

Fig. 2. Bass technique (showing how the teeth
are brushed).

Fig. 3. Structure of the oral
cavity.

Fig. 4. (a)Measurement experiment setup. (b) Luminous
properties of the bristles.

cylinder. We evaluated 5 different toothbrushes in Section
7.5 and obtained a consistent conclusion.

Fig. 5. Photosensors positions and sensor labels for
each view.

3.4 Hardware Design
3.4.1 Consideration of Photosensor Deployment Position.
Our goal is to optimize sensor placement to showcase the
characteristics of Bass technology and oral cavity structure
in the received signal. After careful consideration and exten-
sive experimental tests, we deployed two photosensors at the
side of the toothbrush, near the top, and at approximately
60° from the toothbrush orientation, as depicted in Figure 5.
We thoroughly analyze all the factors of this issue.

(i) Combined with Section 3.3 (luminous properties), as
shown in Figure 6(a), the sensor faces away from the lumi-
nous surface to block direct light. The sensor should also
maintain a shorter travel distance to ensure a stronger re-
flection of light. If the photosensor is deployed on the front
of the toothbrush (Figure 6(b)), more light will directly enter
the photosensor, which may overwhelm the reflected light-
containing features. If the photosensor is deployed on the

back of the toothbrush (Figure 6(c)), only a tiny amount of
light can barely enter the response angle of the sensor.
(ii) According to Section 3.1, there are two situations be-

tween the stroke direction and the toothbrush orientation,
that is, parallel or vertical. As shown in Figure 7, our sensor
orientation can receives signal changes in both directions.
Note that the change of light intensity perpendicular to the
toothbrush orientation significantly impacts the total signal
intensity because of a smaller angle between them.

(iii) From Section 3.2, there is no obvious feature difference
between the left and right molars. However, when brushing
the left and right molars, the rolling angle of the toothbrush
is exactly the opposite (Figure 8). We deployed the sensors
on either side of the toothbrush. Using the asymmetry of the
two sensor signals, we can distinguish left and right molars.

3.4.2 Hardware Design Details. We used the Texas Instru-
ments OPT3002 ($0.581) as the photosensor with a range
of 300nm–1000nm. Figure 9 is the LiT circuit diagram. The
ADDR pins of the two photosensors were connected to the
GND and VCC pins of the Arduino, respectively, to assign
different addresses. The decoupling capacitor of 0.1𝜇𝐹 kept
the supply voltage stable. To facilitate the sensors’ deploy-
ment on the toothbrush’s side, we designed two long flexible
PCBs (223.1 mm×3.8 mm×0.7 mm) and glued them to the
toothbrush using silicone rubber. The sensor’s surface was
covered with a layer of about 0.6mm transparent food-grade
silicone rubber, which prevented saliva from short-circuiting
the sensor and ensured excellent light transmittance. After
86 hours of moisture curing in an environment with ap-
proximately 62% humidity, the system passed the short-time
immersion test (IPX7 waterproof standard). The sampling
rate was preset at 10Hz to ensure low power consumption.

4 CHANNEL MODEL OF BLUE LIGHT IN
ORAL CAVITY

In this section, the channel model of blue light in the mouth
is derived to introduce the working principle, and the theo-
retical feasibility is demonstrated by numerical simulation.
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Fig. 6. Light channel diagram of the photosensor deployed on (a) the
side, (b) the front, and (c) the back of the toothbrush.

Fig. 7. The orientation of the photosen-
sor intersects both 2 strokes.

Fig. 8. Symmetry in
the oral cavity. Fig. 9. Circuit diagram of LiT.

4.1 Single Light Channel Model
As shown in Figure 10(a), a beam of light is emitted from the
light source point 𝐿 on the toothbrush surface, propagated
to the reflection point 𝑅 (e.g., the tooth surfaces), and then
received by the sensor 𝑆 . The propagation process includes
four parts of attenuation: the propagation loss from 𝐿 to 𝑅
is 𝜆𝐿𝑅 , the surface loss at the reflection point 𝑅 is 𝜆𝑅 , the
propagation loss from 𝑅 to 𝑆 is 𝜆𝑅𝑆 , and the reception loss at
sensor 𝑆 is 𝜆𝑆 . We believe that all reflections in the mouth
are diffuse reflections. Therefore, according to Lambert’s law
[67], the reflected light intensity is proportional to the cosine
of the angle between the normal of the reflecting surface and
the incident light source, that is, 𝜆𝑅 ∝ cos𝜃1 and 𝜆𝑅 ∝ cos𝜃2.
Moreover, The attenuation of light propagation through the
air follows the inverse square law [68], that is, 𝜆𝐿𝑅 = 1

𝑑2
1
and

𝜆𝑅𝑆 = 1
𝑑2
2
. Therefore, the intensity of a single beam of light

received by receiver S can be expressed as:

𝐼𝑆 = 𝐼𝐿 · 𝑐 · 𝜆𝐿𝑅 · 𝜆𝑅 · 𝜆𝑅𝑆 · 𝜆𝑆 = 𝐼𝐿 · 𝑐 ·
cos𝜃1
𝑑21

· cos𝜃2
𝑑22

(1)

where 𝐼𝐿 is the light intensity of 𝐿. 𝑐 is the reflectivity of 𝑆 .

4.2 Dynamic Light Intensity Function
Take brushing the outer surfaces of the upper molars as
an example. We first prove that we can only analyze the
section shown in Figure 10(c) to simplify the calculation.
As shown in Figure 10(b), a spherical coordinate system
is established with the 𝐿 as the origin, where the y-axis is
parallel to the toothbrush and the z-axis is perpendicular
to the gingival surface. Consider 2 reflection points 𝐴 and
𝐵 on the same horizontal line on the gingiva, where 𝐴, 𝐿,
and 𝑆 are on the xOz plane, and 𝐵 is not on the xOy plane.
⟨−→𝐿𝐴,−→𝑂𝑧⟩ = 𝜃0 and ⟨−→𝐿𝐴,−→𝐿𝐵⟩ = 𝛼 . Since the angle between −→

𝐿𝐴

and−→𝐿𝐵 is not large, we assume that𝐴 and 𝐵 are on a spherical
circle perpendicular to the z-axis, that is, ⟨−→𝐿𝐵,−→𝑂𝑧⟩ = 𝜃0.
Because the normal vectors of 𝐴 and 𝐵 are parallel to the

z-axis, cos ⟨−→𝐴𝐿,−→𝑛 ⟩ = cos ⟨−→𝐵𝐿,−→𝑛 ⟩ = cos𝜃0. On the other
hand, 𝑑𝐿𝐵 =

𝑑𝐿𝐴
cos𝛼 and 𝐼𝐿 and 𝑐 are constants. Therefore, 𝐼𝐿𝐵 =

𝐼𝐿 · 𝑐 · cos𝜃1
( 𝑑𝐿𝐴cos𝛼 )2

= 𝐼𝐿𝐴 cos2 𝛼 . In the same way, 𝐼𝐵𝑆 = 𝐼𝐴𝑆 cos2 𝛼

can be proved. Therefore, 𝐼𝐿𝐵𝑆 = 𝐼𝐿𝐴𝑆 cos4 𝛼 . During the
process of rotating the toothbrush, the angle 𝛼 between the
point on the same horizontal line and 𝐴 remains almost
unchanged. Therefore, the reflected light intensity on the
same horizontal line can be expressed as 𝑘 · 𝐼𝐿𝐴𝑆 , where 𝑘 is
a constant coefficient.
Brushing is done by rotating the brush head around the

handle and making short strokes. As shown in Figure 10(d),
we took the toothbrush head as the origin of the coordinate
system, and focused on the impact of the change of the rota-
tion angle 𝜃 . The width of the toothbrush ℎ and the distance
between the toothbrush and the tooth 𝑎 are regarded as con-
stants, so 𝑆 (𝑥,𝑦) = (ℎ cos𝜃, ℎ sin𝜃 ), 𝐿(𝑥1, 𝑦1) = ( 𝑦1

𝑡𝑎𝑛𝜃
, 𝑦1)

and 𝑅(𝑥2, 𝑦2) = (𝑎,𝑦2) and light intensity received by 𝑆 can
be written as the formula about 𝜃,𝑦1, 𝑦2:

𝐼𝑆 (𝜃, 𝑦1, 𝑦2 ) = 𝐼𝐿 · 𝑐 · cos𝜃1
𝑑2
1

· cos𝜃2
𝑑2
2

= 𝐼𝐿 · 𝑐 ·
sin𝜃 (𝑎 − 𝑦1

tan𝜃 ) (𝑎 − ℎ sin𝜃 ) + cos𝜃 (𝑎 − 𝑦1
tan𝜃 ) (𝑦2 − ℎ cos𝜃 )

[ (𝑎 − 𝑦1
tan𝜃 )2 + (𝑦2 − 𝑦1 )2 ]

3
2 · [ (𝑎 − ℎ sin𝜃 )2 + (𝑦2 − ℎ cos𝜃 )2 ]

3
2
(2)

By integrating the gingival plane (y2) where the reflection
point is located and the toothbrush luminous surface (y1)
where the light emitting point is located, the reflected light
intensity of the gingival surface to the toothbrush luminous
surface can be obtained:

𝐼𝑆𝑔𝑖𝑛𝑔𝑖𝑣𝑎 (𝜃 ) =
∬

𝐼𝑆 (𝜃,𝑦1, 𝑦2) 𝑑𝑦1 𝑑𝑦2 (3)

Finally, sum the reflected light intensity of multiple reflect-
ing surfaces to get the received total light intensity:

𝐼𝑆𝑠𝑢𝑚 (𝜃 ) =
𝑁∑︁
𝑛=1

𝐼𝑆𝑠𝑢𝑟 𝑓 𝑎𝑐𝑒 (𝜃 ) (4)

where 𝑁 is the number of reflecting surfaces. As shown in
Figure 10(e), the value of 𝑁 can be different. The rotation
angle 𝜃 of the toothbrush is related to the brushing time 𝑡 , so
the light intensity function is a dynamic function 𝐼𝑆𝑠𝑢𝑚 (𝜃 (𝑡))
related to time 𝑡 . Note that we only consider the effect of the
single reflected light on the sensor because the exponential
propagation attenuation has been significantly attenuated
to negligible after multiple reflections.
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Fig. 10. (a) Single light channel model. (b) Spherical coordinate systemwith 𝐿 as the origin. (c) Section perpendicular
to the toothbrush. (d) Cross-section of reflected light. (e) The number of reflective surfaces is different when
brushing different surfaces.

4.3 Numerical Simulation Results
We assume that the height and width of teeth and gums
were both 1cm, and the upper molar protruded outward by
0.25cm. When brushing, there was a 1cm gap between the
upper and lower molars. As shown in Figure 10(e), the curve
of the cheek was a partial elliptical curve that passes through
the boundary points 𝐺𝑢𝑝 and 𝐺𝑙𝑜𝑤 of the upper and lower
gums, and the toothbrush’s leftmost point 𝑇𝐵𝑙 . Plus, the el-
liptical curve’s leftmost point 𝐸𝑙 and𝑇𝐵𝑙 coincided. Brushing
speed was uniform. The reflectivity of gum, tooth, and cheek
were set as 0.25, 1, and 0.1, respectively. We used Matlab to
calculate the brushing signals for the 2 surfaces shown in
Figure 10(e). The simulation results (Figure 11) show that
the signals are still very different even when brushing the
structurally similar outer surfaces of the upper and lower
molars. Specifically, when brushing the outer surface of the
lower molars and rotating the toothbrush upwards, there is
an angle at which the upper sensor (sensor 1) receives the
strongest reflection of the occlusal surface of the upper mo-
lars, causing a sudden increase in signal amplitude (Figure
11 (b)). However, when brushing the upper molars, the lower
sensor (sensor 2) signal does not undergo a sudden increase.
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Fig. 11. The numerical simulation results of the outer
surfaces of the (a) upper and (b) lower molars.

5 MEASUREMENT AND ANALYSIS
This section analyzes the signals collected under the influ-
ence of different factors, as the basis for the system design.

5.1 Effect of Vibration
The first question is whether LiT can be used for manual
toothbrushes and electric toothbrushes. With the LEDs of the

toothbrush turned on, a user placed the toothbrush on the
occlusal surfaces of the lower left molars without brushing.
Figure 12 shows the light intensity signals received by the
2 sensors before and after opening the vibration. We found
that the vibration did not cause obvious fluctuation at the
preset 10Hz sampling rate. This is because the vibration of
the electric toothbrush belongs to high-frequency vibration
(more than 20,000 times per minute [69]) and its amplitude
is small. The low sampling rate of 10Hz automatically filters
out high-frequency vibration noise.
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Fig. 12. Vibration does not fluctuate signal.
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5.2 Characteristics of Brushing
Figure 13 shows a user’s brushing process under the ceiling
light. During the process of putting the toothbrush into the
mouth, the 2 sensors receive ambient light with very high
light intensity. When brushing the outer surfaces of the up-
per left molars, the signals of 2 sensors become stable. When
the brushing surfaces are switched by turning the toothbrush,
the light signals fluctuate again. The non-brushing period
may produce greater light intensity, so we cannot utilize the
light intensity to segment the brushing signal. However, the
brushing process is repetitive, which is reflected in the peri-
odic change of light intensity (Figure 14(a)). This periodicity
allows us to distinguish between brushing and non-brushing.
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Moreover, when we carefully amplify the signal, we can be
surprised to observe the symmetry in a brushing cycle (Fig-
ure 14(b)). This is because the toothbrush needs to return
to the original position (e.g., the root of the tooth (Figure
2)) along the original path after each stroke. This symmetry
makes the brushing signal more characteristic and can help
improve the time accuracy of segmentation.
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Fig. 14. (a) Periodicity and (b) symmetry of brushing
signals on the outer surfaces of the upper right molars.

5.3 Effect of Ambient Light
We study how the environment variable most likely to cause
interference (i.e., ambient light) affects the signal. We col-
lected a user’s brushing signals of 16 Bass technique surfaces
under the ceiling light without turning on the toothbrush
LEDs. We found that the light intensity received by 2 sensors
was very weak (<8 lux) when brushing 14 Bass technique sur-
faces except for the outer surfaces of the front teeth. Figure
15 shows this observation. Our insight is: When brushing 14
Bass technique surfaces except for the outer surfaces of the
front teeth, the sensors are located at the top of the tooth-
brush, in the oral cavity, and face the inside of the mouth.
The direction of ambient light entering the oral cavity is
also from the mouth to the inside, and is weak, which is par-
tially blocked by oral tissues. After reflecting within the oral
cavity, the light reaching the top sensor of the toothbrush
becomes weaker in intensity. However, we noticed that the
signals were strong when brushing the outer surfaces of the
upper and lower front teeth because the sensors were not
in the oral cavity and were only partially occluded by the
lips (Figure 15(right)). Therefore, we further observed the
brushing signals when the toothbrush LEDs were turned on
under different light conditions (Figure 16). We found that
the ambient light significantly affected the sensor facing to-
ward the ceiling (Sensor 2). The maximum and amplitude of
the signals increased with the increase in light intensity, but
their minimum and waveform did not change significantly.
Modulating the toothbrush LEDs at a frequency independent
of ambient light and filtering the ambient light using FFT is
a potential method, but it requires additional oscillator hard-
ware and may need a higher sampling rate. In Section 6.2, we
propose a technique to eliminate ambient light interference
without extra hardware and a higher sampling rate.
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Fig. 15. The brushing signals when the toothbrush
LEDs were turned off under the ceiling light.
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Fig. 16. Signals on the outer surfaces of (a) upper and
(b) lower front teeth with varied lighting conditions.

5.4 Effect of Toothpaste
Figure 17 shows the user’s brushing signals when using
low-foam toothpaste (ZendiumTM toothpaste) and not using
toothpaste. We found that the original brushing signals were
consistent regardless of whether the toothpaste was used
or not, which means that the low-foam toothpaste hardly
affected the signals. Because the low-foam toothpaste pro-
duces less-dense foam after being dissolved by saliva, it does
not extensively cover the reflective surfaces in the oral cavity
(teeth, gums, etc.) [33]. Moreover, a small amount of foam
covering the sensors’ surfaces does not significantly attenu-
ate light entering the sensors.
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Fig. 17. The original brushing signals remained consis-
tent whether (b) using toothpaste or (a) not.

5.5 Signal of 16 Bass Technique Surfaces
This section studies the signal difference of different Bass
technique surfaces. A user sat in a dark room and brushed
each of the 16 surfaces 10 times using low-foam toothpaste.
We separately calculated the euclidean distance between
each brushing cycle and other brushing cycles for each sen-
sor signal. Then, we added the results of the 2 sensor signals
and averaged all the cycles as a result. Note that to ensure
the alignment of each brushing cycle, we performed piece-
wise linear interpolation for the 2 sensor signals collected.
The result (Figure 18) shows that the intragroup euclidean
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distance of each brushing surface is smaller than its inter-
group distance, which also verifies the previous analysis and
effectiveness of the hardware design.
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Fig. 18. Euclidean distance of the same and different
Bass technique surfaces.
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Fig. 19. Three brushing cycle signals of four users when
brushing the outer surfaces of the lower left molars.

5.6 User Variability
Although dentists encourage users to use the standardized
Bass technique, the differences between users include the
brushing speed, uneven teeth and gums, mouth opening
size, and changes in the position and inclination between
the toothbrush and teeth, which produce signal variability.
Figure 19 shows the brushing signals of 4 users on the outer
surfaces of the lower left molars. We found that the variabil-
ity is mainly reflected in the slight difference in duration
and amplitude. We extracted the stable relationship features
between the 2 sensor signals closely related to the brushing
surfaces to counter this instability and amplify the differen-
tiation of the brushing surfaces.

Fig. 20. The workflow of LiT.

6 FRAMEWORK
Figure 20 illustrates LiT’s workflow. LiT first receives 2 pho-
tosensors’ signals as input and determines whether it is a
brushing action based on the periodicity and symmetry of
the signals and segments the brushing signals. LiT then uses
ambient light interference cancellation technology to elimi-
nate the ambient light interference. Finally, the features of
the signal segments are extracted and given to the classifier.

6.1 Brushing Signal Segmentation
The first task of LiT is to accurately segment the brushing
signal in time. In Section 5.2, we found that periodicity and
symmetry of signals are two necessary conditions for tooth-
brushing activity. First, we calculate the autocorrelation of 2
sensor signals within a window size of 27 (approximately 3
toothbrushing cycles). The autocorrelation of a signal is the
correlation between the current signal and a signal that lags
behind at a certain time.We first normalize the sensor signals
to facilitate subsequent threshold judgment. Figures 21(b)
and (c) are lag plots corresponding to Figure 21(a), show-
ing the relationship between correlation and lag. We can
see that autocorrelation has several large positive peaks and
small negative valleys. The position of the negative valley
indicates that the signal starting from this point has a com-
pletely negative correlation with the original signal. This
negative correlation is due to the symmetry of the signals
in the first and second half cycles of a toothbrushing cycle,
which is a completely negative correlation. A large peak
value indicates that the signal starting from this point has
a completely positive correlation with the original signal,
which also means the occurrence of a toothbrushing cycle.
In contrast, if an aperiodic signal appears, it disrupts the
characteristics of negative and positive alternating of the
signal autocorrelation (Figure 22).
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Fig. 21. (a) Brushing sig-
nals. (b) (c) autocorrela-
tion of signals.
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Fig. 22. (a) Signals contain-
ing non-brushing. (b) (c)
autocorrelation of signals.

Therefore, when we simultaneously detect negative val-
leys and positive peaks that appear successively in the au-
tocorrelation of 2 sensor signals, with both peaks>0.15 and
valleys<-0.15, it is considered that the signals within the cur-
rent window are periodic. Next, we slide the window and
repeat the above operation. The step length is the length
of the first toothbrushing cycle in the window. Note that
there may be a deviation in the positive peak position of
the autocorrelation between the 2 sensor signals. We select
the peak position with greater autocorrelation to segment
the signal. Figure 23 is an automatic segmentation result of
Figure 13, indicating that our algorithm is robust in recog-
nizing toothbrushing signals and segmenting each cycle of

1096



LiT: Fine-grained Toothbrushing Monitoring with Commercial LED Toothbrush ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

the toothbrushing signal. Note that our algorithm only has a
lag of 2.7 s at the beginning due to the need to fill the data of
window size. In the subsequent judgment, the time interval
is a toothbrushing cycle, which is < 1 s.
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Fig. 23. Toothbrushing signal segmentation results.

6.2 Ambient Light Interference
Cancellation

We conducted experiments in 10 rooms with ceiling lights
on, allowing for comfortable visibility. These rooms varied
in size, types of ceiling lights, quantity, and arrangement. We
found that ambient light interferes the brushing signals on
the outer surfaces of the front teeth, all reaching a maximum
of more than 250 lux. This may be because enough light in-
tensity ensures comfortable lighting. However, the brushing
signals on the other 14 tooth surfaces were not affected and
did not exceed 250 lux. Therefore, we calculated the signal
segments’ maximum value, and if either segment exceeded
250 lux, the outer surfaces of the front teeth were considered
to be brushed in strong ambient light (ceiling light, sunlight).
Considering variations in the maximum value of the brush-
ing signal on the outer surfaces of the front teeth under
different ambient light conditions, we compressed signals
below a fixed value to ensure signal stability. When brushing
the outer surfaces of the front teeth in dark or dim light con-
ditions, both sensor signals’ maximum values were around
150 lux. Therefore, to achieve consistency between brushing
signals in strong light environments and dark or dim light en-
vironments, we used the following formula to compress the
light intensity to below 150 lux while ensuring no changes
in the minimum value and waveform of the signal:

𝑥𝐴𝐿𝐼𝐶 =
𝑥 −min(𝑥)

𝑚𝑎𝑥 (𝑥) −𝑚𝑖𝑛(𝑥) · (150 −𝑚𝑖𝑛(𝑥)) +𝑚𝑖𝑛(𝑥) (5)

where 𝑥𝐴𝐿𝐼𝐶 is the corrected signal and 𝑥 is the original
signal. Figure 24 shows the corrected result of Figure 16.

6.3 Feature Extraction
Figure 25 shows the signals of 3 toothbrushing cycles of
each Bass technique surface of a user in dim light. Next,
we explain our analysis of feature extraction based on this
figure. We found that the 2 sensor signals were significantly
different for different brushing surfaces, so we extracted the
following features of the two signals respectively.
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Fig. 24. Ambient light interference cancellation results
of outer surfaces of (a) upper and (b) lower front teeth.

Independent features of the 2 sensor signals:
(1) Standard deviation:We found that when brushing the

inner surfaces of the upper front teeth and the occlusal sur-
faces of molars, the range of light intensity received by the
two sensors is relatively small because the angle between
the sensor orientation and the brushing direction is small
(30°) (Figure 7). In contrast, the signal variation range of the
vertical stroke is large.

(2) Root mean square: We found that when brushing the
inner surfaces of the upper molars, the 2 sensors received
stronger light intensity than when brushing the outer sur-
faces of the upper molars. This is because when brushing
the inner surfaces of the upper molars, the sensor is located
in the mouth cavity and can receive the reflected light from
the palate and tongue without the occlusion of the cheek.
We are inspired by the calculation of the effective value of
alternating current (i.e., root mean square). The root mean
square can also represent the average light intensity level
that swings up and down like the alternating current.
(3) Minimum value: if the sensor sticks close to the oral

tissue at some time of brushing, it leads to a smaller minimum
value, which is helpful to distinguish some surfaces. For
example, when brushing the occlusal surfaces of the molars,
the sensor on the outside of the molars and close to the cheek
have a smaller minimum value.

(4) Maximum value: Similarly, the maximum value of the
signal has a similar meaning.

Recall that user variability causes slight amplitude changes
in the signal, which may weaken the effectiveness of features
extracted from individual signals. To meet this challenge, we
extracted the relatively stable relationship features between
the 2 sensor signals.
Relationship features between 2 sensor signals:
(1) Root mean square difference: It reflects the relative po-

sition of the toothbrush in the oral cavity. For example, the
sensor close to the cheek remains relatively weak when
brushing the occlusal surfaces of molars because it is diffi-
cult for this sensor to receive reflected light. However, in a
relatively open mouth, another sensor can receive reflected
light from oral tissue (e.g., tongue, palate, and inner surfaces
of the molars), so it continuously receives strong reflected
light. This relatively stable spatial location relationship does
not be affected by user variability. The positive and negative
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Fig. 25. A user’s brushing signals on each Bass technique surface in dim light.

values generated by two sensors with different addresses are
also helpful to distinguish left and right molars.

(2) Mean Euclidean distance: It measures the absolute simi-
larity of the 2 sensor signals, which reflects the similarity of
the oral structure on both two sides of the toothbrushes. The
2 sensor signals almost overlap when brushing the inner sur-
face of the upper and lower front teeth because the left and
right sensors of the toothbrush face similar oral structures.
However, the oral structure on both sides of the toothbrush
differs when brushing other surfaces. Taking the average can
eliminate the influence of signal length (brushing speed).

(3) Cosine distance: We also calculated the cosine distance
to measure the difference between the oral structures on both
sides of the sensor, without being affected by light intensity.
(4) Pearson correlation coefficient: Correlation indicates

whether the two sensors’ changing trend of light intensity is
consistent. For up-and-down strokes (except for the tongue’s
influence), the 2 sensors move in opposite directions, so their
signals are negatively correlated. When brushing the inner
surfaces of lower molars, the toothbrush sticks to the tongue
when it is at the tooth’s root. At this time, the received light
of the downward sensor is weak, resulting in a positive signal
correlation. The correlation between the 2 sensor signals is
always stable for user variability.
Whenever we receive a signal for a toothbrushing cycle,

we calculate the features and place them in the classifier. Note
that our calculated features are not affected by signal length,
and are immune to duration differences in user variability.

6.4 Classification
We standardized the 12 (4 × 2 + 4) features extracted above
using Z-score, changing the mean value of each feature to
1 and the standard deviation to 0. Then, we trained several
classic classifiers, including Linear Discriminant Analysis
(LDA), Weighted K-Nearest Neighbor (Weighted KNN), Sup-
port Vector Machine (SVM), Bagging Tree (BT), and Artificial
Neural Networks (ANN) to identify the brushing surfaces.
For Weighted KNN, we choose Euclidean distance as the
distance metric and use an inverse square function as the

weighting function with a k-value of 10. For the kernel func-
tion of SVM, we choose a linear function. The first layer size
of the ANN is 100, the activation function is ReLU, and the
number of fully connected layers is 1. After comparing the
accuracy (Section 7.2.1), we chose to use Weighted KNN as
the classifier for LiT.

7 SYSTEM EVALUATION

Fig. 26. Experimental setup and close-up of LiT.

7.1 Experimental Setup
We recruited 16 participants, including 6 women and 10 men;
the age ranges from 21 to 46. They were first asked to watch
the correct teaching video of toothbrushing [65] and care-
fully learn the correct Bass technique. Each participant used
LiT (based on Abitelax F7 [69]) to brush his teeth 10 times, 2–
4 minutes each time (Figure 26). The default condition is that
the user stands still in front of the sink and brushes his/her
teeth with ZendiumTM toothpaste (pea-sized amount) under
the ceiling light and turns on the vibration. In addition, to
further study the impact of other factors on LiT, in the evalu-
ation of Section 7.3, 7.4 and 7.5, we required 6 users to brush
their teeth 5 times under specified conditions, 2-4 minutes
each time. We collected data under the framework of Figure
20 and inputted the collected data into the LiT algorithm.
We used the leave-one-out to exclude the samples of users
to be tested from the training set, and use the average value
obtained by 10-fold cross-validation as the calculation result,
in order to test the cross-user accuracy of LiT.
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7.2 Toothbrushing Monitoring
Performance

7.2.1 Impact of the Model. As shown in Figure 27, all classi-
fiers achieved over 90% recognition accuracy, with LDA and
Weighted KNN exceeding 93%. The reason behind this may
be that the feature dimensions we extracted are low and the
features can be effectively distinguished. We chose Weighted
KNN as it has the highest accuracy of 95.3%. Moreover, it
has a good anti-noise ability and is insensitive to outliers
compared with LDA.

7.2.2 Recognition Accuracy of Bass Technique Surfaces. The
confusion matrix is shown in Figure 28. The recognition ac-
curacy of LiT for each brushing surface is more than 87%
and the average recognition accuracy is 95.3%, which in-
dicates that the model of LiT training on other users can
be generalized to other users. We believe we can "smooth"
user variability by extracting stable features to reduce the
data dimension. In particular, we extract stable relationships
between 2 sensor signals to resist user variability.

7.2.3 Accuracy of Duration Estimation. Figure 29 shows the
absolute error of estimation of brushing duration on each
tooth surface, with an average error of 6.1%, indicating that
periodic brushing signals can be accurately segmented using
the periodicity and symmetry of periodic signals of brushing.

7.2.4 Impact of User Variability. Figure 30 shows the recog-
nition accuracy of brushing surfaces of 16 users, ranging
from 86.7% to 97.5%. Except for one user, the recognition
accuracy of other users has exceeded 90%. We found that the
lower accuracy of this user can be attributed to an impacted
tooth affecting tooth flatness on the inner side of their upper
right molars. Factors like wearing braces, impacted teeth or
missing teeth can influence accuracy due to light reflection
and transmission changes in the oral cavity. We recommend
pre-training tailored models for users with unique oral struc-
tures.

7.2.5 Different Feature Sets. We also want to know which
features are more effective for distinguishing the brushing
surface. We compare the feature set used by LiT to three

feature sets: (1) Feature set 1: Independent features of sensor
1 (4 features). (2) Feature set 2: Independent features of 2
sensor signals (8 features). (3) Feature set 3: The relationship
features between 2 signals (4 features).

Figure 31 shows the results of this experiment. We found
that the recognition accuracy of independent sensor signal
features is relatively low (88.3%). The independent features
of the 2 sensor signals can improve the recognition accuracy
to 93.0%. This indicates that a single sensor has insufficient
resolution, and the dual sensor design can help better distin-
guish brushing surfaces. The relationship features between
2 signals (only 4 features) achieve an accuracy of 90.6%, indi-
cating that the relationship features between 2 signals can
explain the physical significance behind and efficiently dis-
tinguish the brushing surface. The results of LiT with the
highest recognition accuracy indicate that the combination
of independent features and relationship features contribute
to accurate and robust recognition of the brushing surfaces.

7.3 Robustness
We used the training model of 16 users by default to test
the impact of environment and user movement on LiT and
calculated the average recognition accuracy.

7.3.1 Impact of Toothbrush Vibration. The accuracy of sur-
face recognition without vibration is 96.1%, which is only
0.84% higher than the accuracy with vibration (95.3%). Con-
sistent with the analysis in Section 5.1, LiT works well with
bothmanual toothbrushes and electric toothbrushes. The am-
plitude of the high-frequency vibration of the toothbrush is
weak compared to the amplitude of the brush stroke, which
is hardly reflected in the original signal with a low sam-
pling rate of 10 Hz. In contrast, inertial sensor-based systems
[6, 18–20] can only be used for manual toothbrushes because
the vibrations from the toothbrush increase the drift error of
the inertial sensors. The sound generated by brushing teeth
can be masked by the vibration sound of the toothbrush
vibro-motor, resulting in a microphone-based system [15–
17] that can only be used with manual toothbrushes. MET
[21] based on the vibro-motor magnetic field of the electric
toothbrushes can only be used with electric toothbrushes.
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7.3.2 Impact of Ambient light Interference. We tested the
performance of LiT in 5 light environments: (1) Dark bath-
room with 3 lux, simulating teeth brushing without turning
on the light. (2) Morning bathroom with ceiling light off,
190 lux. (3) Balcony in natural light, 380 lux. (4) Nighttime
bathroom with ceiling light on, around 750 lux. (5) Bathroom
with ceiling light on a sunny afternoon, around 1,800 lux.

Figure 32 displays recognition accuracy for 5 scenarios,
with and without ambient light interference cancellation.
Even under strong ambient light ((4) and (5)), the recognition
accuracy of LiT is more than 93.8%. However, without ambi-
ent light interference cancellation, accuracy drops to 82.8%.
This is because when brushing most of the tooth surface, the
toothbrush is located in the mouth and will not be affected
by ambient light, but when brushing the outer surfaces of
the front teeth, the sensor will receive strong ambient light.
If the ambient light interference cancellation technology is
not used, the amplitude and maximum value of one of the
features will be affected. After using the ambient light in-
terference elimination technology, the brushing signal on
the outer surfaces of the front teeth returned to below 150
lux, ensuring the stability of the amplitude and maximum
characteristics. To sum up, our proposed ambient light inter-
ference cancellation technology effectively enhances LiT’s
robustness to ambient light.

7.3.3 Impact of User Motion. Shielding user motion is one
of our design goals. To examine the robustness of LiT to user
motion, we introduced five kinds of potential user motion
when brushing teeth: (1)Walking up and down in front of the
sink when brushing. (2) Looking down at the video played
on the mobile phone beside the sink when brushing. (3) From
standing to sitting on a chair when brushing. (4) Putting the
toothpaste back in its original position on the cabinet over
the sink when brushing. (5) Rinsing non-brushing hands
with water from the tap when brushing. Users used both LiT
and the most advanced IMU-based Oral-B iO9 to brush their
teeth under these five motion conditions.
The results in Figure 33 show that the recognition accu-

racy of LiT is 91.0%–94.6% when the users are in motion.
This shows that user motion does not actually interfere with

LiT. We believe this is because the toothbrush still main-
tains a relatively stable position in the oral cavity under the
influence of various motions. In contrast, the recognition
accuracy of Oral-B iO9 is only 64.5%–83.3% (Figure 33). This
could be due to the principle of using integration to obtain
absolute displacement and roll angle in IMU-based methods.
The cumulative error in integration and the superposition
of user motion on absolute displacement can easily lead to
a decrease in recognition accuracy. Evidently, the sensing
paradigm of LiT (sensing in the oral cavity) is very robust
to user motion, which is also a unique advantage compared
with existing technologies.

7.3.4 Temporal Stability. Abiterax F7 can last for 90 days
under normal use [69]. Users may only charge the electric
toothbrush once amonth.We experimented to observe the ac-
curacy of LiT during continuous operation. Figure 34 shows
the recognition accuracy of 6 users over time. We found that
the accuracy remained stable at around 95% over 2 months,
with only a 6% drop in battery voltage and LED light inten-
sity. This shows that LiT can run consistently for more than 2
months under the pre-training model without retraining the
model. We believe that this temporal stability comes from the
stability of the toothbrush’s luminous model (the luminous
properties after 2 months are still close to the measurement
of Figure 4) and the stability of the user’s oral structure. We
found that after 2 months and 18 days of use, the voltage
and LED light intensity dropped by 9% and the bristle ends
were slightly worn, and the accuracy dropped to about 90%.
Moreover, we found that the voltage decay was non-linear
towards the end of use, dropping rapidly within three min-
utes from 3.3 V to below the vibration motor and LED drive
threshold (2.9 V). Therefore, we believe that as long as the
motor and LEDs can be driven, a maximum of 9% reduction
in brightness will not significantly affect accuracy.

7.4 Generalization to Any Toothpaste
Toothpaste contains a surfactant, usually Sodium Lauryl Sul-
fate (SLS), with concentrations usually ranging from 0.5 wt%
to 2.5 wt% [70], which helps create foam. For this study, we
customized 11 toothpastes with SLS content ranging from
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0.5 wt% to 2.5 wt% with 0.2 wt% intervals (each available in
five different colors: white, red, yellow, blue, and green). Six
users brushed their teeth five times with each toothpaste.
Our findings show that the Weight KNN model’s 10-fold
cross-validation accuracy for toothpaste with varying colors
but the same SLS content is approximately 94%. This might
be because the expanded foam generated by SLS dilutes the
pigment to a very light shade, still close to white. However,
we found that the recognition accuracy of the brushing sig-
nals with high-foam toothpaste (2 wt% SLS) on the model
trained with low-foam toothpaste (0.5% SLS) was 85.4%. This
suggests that SLS content does affect recognition accuracy
but also highlights the model’s generalization capability.
We assume that users need to brush two specified tooth

surfaces (the outer surface of the upper and lower left mo-
lars) for 10 s using their own toothpaste for initialization. LiT
then calculates the sum of the weighted distances between
the brushing signals and the 10 nearest samples of the same
category in all pre-trained models and selects the model with
the smallest distance as the classification model. To minimize
pre-training costs, we explored the model’s generalization
ability. We randomly selected one brushing session signal
from the five sessions of each user using the same toothpaste
as the test set for that particular toothpaste. We utilized 4
other brushing sessions signal to train models for each SLS
content, extracting model sets with 0.2 wt%, 0.4 wt%, 0.6 wt%,
0.8 wt%, and 1.0 wt% SLS intervals to simulate the desired
training samples. For example, a model set with 0.8 wt% inter-
vals includes 3 models with different SLS contents (0.9 wt%,
1.7 wt%, 2.5 wt%), meaning only these 3 SLS contents need
to be trained. Then, we used the two 10-s specified brushing
signals from each user’s brushing session in the test set to
select the corresponding models for each user’s brushing
session and calculated the average accuracy. Figure 35 is the
relationship between SLS intervals and testing accuracy. To
achieve balance, we recommend manufacturers to train 4
models with different SLS content at intervals of 0.6 wt% (0.7
wt%, 1.3 wt%, 1.9 wt%, 2.5 wt%) for each toothbrush model.

7.5 Extension to Other Toothbrushes
We also want to know whether the model we trained on
Abitelax F7 can be used on other toothbrushes. Therefore,
we have also tested 4 additional toothbrushes (GOSMILE,
SNOW, Glorysmile GS-ET, and Glorysmile GS-005T). We
found that the recognition accuracy of the 4 toothbrushes
on the surface of Bass technique exceeded 83% without ad-
ditional training (Figure 36). We found that different tooth-
brushes use different LEDs with different power. However,
their luminous models are similar, that is, they can be re-
garded as a collection of point light sources with the same
light intensity on the surface of an elliptical cylinder. We

found that the difference between different types of tooth-
brushes is reflected in the amplitude change. However, the
waveform of the 2 sensor signals and the relative position
between them have not changed significantly.

8 CONCLUSION AND FUTUREWORK
LiT utilizes the toothbrush’s light emission to monitor the
brushing of 16 Bass technique surfaces. We established the
oral cavity’s light transmission model and found the proper
photosensors deployment.We found the periodicity and sym-
metry features, designed the accurate brushing segmentation,
and eliminated the impact of user variability by extracting
stable and significant features. LiT has a recognition accu-
racy of up to 95.3% and a brushing duration estimation error
of 6.1%, and maintains strong performance under various
environmental disturbances and movement. However, some
limitations should be addressed in the future as it is a proof-
of-concept prototype.
From design: Current LiT attaches the sensor to the tooth-
brush head’s surface. However, its protruding surface affects
the user experience and is inconvenient to replace the tooth-
brush head. In the future, sensors can be integrated into the
inner shell of the toothbrush head like the toothbrush LEDs.
Interactive paradigm: We plan to switch from wired data
transmission to Bluetooth for real-time processing of light-
intensity data on mobile devices. The mobile device will
provide feedback on brushing and nursing advice using its
touchscreen, speaker, or vibration features.
Combining with other sensors: Combining LiT with other
sensors can enhance recognition and improve monitoring
despite its usefulness in monitoring purposes alone.
Studies on larger populations: LiT may not cover the
entire range of human diversity, so larger-scale studies are
necessary to promote the deployment of LiT.
Enhancing generality: Our study is based on Bass tech-
nique since it is the most popular brushing method recom-
mended by the ADA. Expansion of incorrect brushing iden-
tification and other brushing methods are the future work.

ACKNOWLEDGMENTS
This research was supported in part by China NSFC Grant
U2001207, Guangdong Provincial Key Lab of Integrated Com-
munication, Sensing and Computation for Ubiquitous Inter-
net of Things, the Project of DEGP (No. 2021ZDZX1068).

ARTIFACT APPENDIX
The research artifacts accompanying this paper are available
via https://doi.org/10.5281/zenodo.8260593.

1101

https://doi.org/10.5281/zenodo.8260593


ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Kaixin Chen1, Lei Wang1, Yongzhi Huang2,3, Lu Wang1,∗, Kaishun Wu2,3

REFERENCES
[1] Poul Erik Petersen. The world oral health report 2003: continuous

improvement of oral health in the 21st century–the approach of the
who global oral health programme. Community Dentistry and oral
epidemiology, 31:3–24, 2003.

[2] Cherin C Pace and Gary H McCullough. The association between oral
microorgansims and aspiration pneumonia in the institutionalized
elderly: review and recommendations. Dysphagia, 25:307–322, 2010.

[3] Norman O Harris and Franklin Garcia-Godoy. Primary preventive
dentistry. Upper Saddle River, NJ: Pearson Education, 2004.

[4] Iain LC Chapple, Fridus Van der Weijden, Christof Doerfer, David Her-
rera, Lior Shapira, David Polak, PhoebusMadianos, Anna Louropoulou,
Eli Machtei, Nikos Donos, et al. Primary prevention of periodontitis:
managing gingivitis. Journal of clinical periodontology, 42:S71–S76,
2015.

[5] Andrew Gallagher, Joseph Sowinski, James Bowman, Kathy Barrett,
Shirley Lowe, Kartik Patel, Mary Lynn Bosma, and Jonathan E Creeth.
The effect of brushing time and dentifrice on dental plaque removal in
vivo. American Dental Hygienists’ Association, 83(3):111–116, 2009.

[6] SaymaAkther, Nazir Saleheen, Mithun Saha, Vivek Shetty, and Santosh
Kumar. mteeth: Identifying brushing teeth surfaces using wrist-worn
inertial sensors. Proceedings of the ACM on interactive, mobile, wearable
and ubiquitous technologies, 5(2):1–25, 2021.

[7] Renate Deinzer, Stefanie Ebel, Helen Blättermann, Ulrike Weik, and
Jutta Margraf-Stiksrud. Toothbrushing: to the best of one’s abilities is
possibly not good enough. BMC Oral Health, 18:1–7, 2018.

[8] Tobias Winterfeld, N Schlueter, Daniela Harnacke, Jörg Illig, Jutta
Margraf-Stiksrud, Renate Deinzer, and Carolina Ganss. Toothbrushing
and flossing behaviour in young adults—a video observation. Clinical
oral investigations, 19:851–858, 2015.

[9] Gudrun Sangnes and Per Gjermo. Prevalence of oral soft and hard
tissue lesions related to mechanical toothcleansing procedures. Com-
munity Dentistry and Oral Epidemiology, 4(2):77–83, 1976.

[10] Sara Cioccari Oliveira, Dagmar Else Slot, and Fridus van derWeijden. Is
it safe to use a toothbrush? Acta Odontologica Scandinavica, 72(8):561–
569, 2014.

[11] Adrian U Yap. Oral health equals total health: A brief review. Journal
of Dentistry Indonesia, 24(2):59–62, 2017.

[12] Yu-Chen Chang, Jin-Ling Lo, Chao-Ju Huang, Nan-Yi Hsu, Hao-Hua
Chu, Hsin-YenWang, Pei-Yu Chi, and Ya-Lin Hsieh. Playful toothbrush:
ubicomp technology for teaching tooth brushing to kindergarten chil-
dren. In Proceedings of the SIGCHI conference on human factors in
computing systems, pages 363–372, 2008.

[13] Nahyeon Lee, Doyoung Jang, Yeji Kim, Byung-Cull Bae, and Jun-Dong
Cho. Denteach: A device for fostering children’s good tooth-brushing
habits. In Proceedings of the The 15th International Conference on
Interaction Design and Children, pages 619–624, 2016.

[14] Marco Marcon, Augusto Sarti, and Stefano Tubaro. Toothbrush motion
analysis to help children learn proper tooth brushing. Computer Vision
and Image Understanding, 148:34–45, 2016.

[15] Zhenchao Ouyang, Jingfeng Hu, Jianwei Niu, and Zhiping Qi. An
asymmetrical acoustic field detection system for daily tooth brushing
monitoring. In GLOBECOM 2017-2017 IEEE Global Communications
Conference, pages 1–6. IEEE, 2017.

[16] Jay Prakash, Zhijian Yang, Yu-Lin Wei, Haitham Hassanieh, and
Romit Roy Choudhury. Earsense: earphones as a teeth activity sensor.
In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, pages 1–13, 2020.

[17] Joseph Korpela, Ryosuke Miyaji, Takuya Maekawa, Kazunori Nozaki,
and Hiroo Tamagawa. Evaluating tooth brushing performance with
smartphone sound data. In Proceedings of the 2015 ACM International

Joint Conference on Pervasive and Ubiquitous Computing, pages 109–
120, 2015.

[18] Young-Jae Lee, Pil-Jae Lee, Kyeong-Seop Kim, Wonse Park, Kee-Deog
Kim, Dosik Hwang, and Jeong-Whan Lee. Toothbrushing region de-
tection using three-axis accelerometer and magnetic sensor. IEEE
Transactions on Biomedical Engineering, 59(3):872–881, 2011.

[19] Hua Huang and Shan Lin. Toothbrushing monitoring using wrist
watch. In Proceedings of the 14th ACMConference on Embedded Network
Sensor Systems CD-ROM, pages 202–215, 2016.

[20] Chengwen Luo, Xingyu Feng, Junliang Chen, Jianqiang Li, Weitao Xu,
Wei Li, Li Zhang, Zahir Tari, and Albert Y Zomaya. Brush like a dentist:
Accurate monitoring of toothbrushing via wrist-worn gesture sensing.
In IEEE INFOCOM 2019-IEEE Conference on Computer Communications,
pages 1234–1242. IEEE, 2019.

[21] Hua Huang and Shan Lin. Met: a magneto-inductive sensing based
electric toothbrushing monitoring system. In Proceedings of the 26th
Annual International Conference on Mobile Computing and Networking,
pages 1–14, 2020.

[22] Elina A Genina, Vladimir A Titorenko, Andrey V Belikov, Alexey N
Bashkatov, and Valery V Tuchin. Adjunctive dental therapy via tooth
plaque reduction and gingivitis treatment by blue light-emitting diodes
tooth brushing. Journal of Biomedical Optics, 20(12):128004–128004,
2015.

[23] Nadja Bjurshammar, Sebastian Malmqvist, Gunnar Johannsen, Elis-
abeth Boström, Jonas Fyrestam, Conny Östman, Annsofi Johannsen,
et al. Effects of adjunctive daily blue light toothbrushing on dental
plaque and gingival inflammation—a randomized controlled study.
Open Journal of Stomatology, 8(10):287, 2018.

[24] Si-Mook Kang, Hoi-In Jung, and Baek-Il Kim. Susceptibility of oral
bacteria to antibacterial photodynamic therapy. Journal of oral micro-
biology, 11(1):1644111, 2019.

[25] Anaga Ojo, Samir Chatterjee, Harold W Neighbors, Gretchen A Piatt,
Sanjoy Moulik, Bonita D Neighbors, Jamie Abelson, Chris Krenz, and
Darlene Jones. Oh-buddy: mobile phone texting based intervention for
diabetes and oral healthmanagement. In 2015 48th Hawaii International
Conference on System Sciences, pages 803–813. IEEE, 2015.

[26] Harish C Jadhav, Arun S Dodamani, GN Karibasappa, Rahul G Naik,
Mahesh R Khairnar, Manjiri A Deshmukh, and Prashanth Vish-
wakarma. Effect of reinforcement of oral health education mes-
sage through short messaging service in mobile phones: a quasi-
experimental trial. International journal of telemedicine and appli-
cations, 2016:2–2, 2016.

[27] Kee-Deog Kim, Jin-Sun Jeong, Hae Na Lee, Yu Gu, Kyeong-Seop Kim,
Jeong-Whan Lee, and Wonse Park. Efficacy of computer-assisted, 3d
motion-capture toothbrushing instruction. Clinical oral investigations,
19:1389–1394, 2015.

[28] Tatsuo Nakajima, Vili Lehdonvirta, Eiji Tokunaga, and Hiroaki Kimura.
Reflecting human behavior to motivate desirable lifestyle. In Proceed-
ings of the 7th ACM conference on Designing interactive systems, pages
405–414, 2008.

[29] Yuan Liang, HsuanWei Fan, Zhujun Fang, Leiying Miao, Wen Li, Xuan
Zhang, Weibin Sun, Kun Wang, Lei He, and Xiang’Anthony’ Chen.
Oralcam: enabling self-examination and awareness of oral health using
a smartphone camera. In Proceedings of the 2020 CHI conference on
human factors in computing systems, pages 1–13, 2020.

[30] Guy Tobias, Assaf B Spanier, et al. Developing a mobile app (igam) to
promote gingival health by professional monitoring of dental selfies:
user-centered design approach. JMIRmHealth and uHealth, 8(8):e19433,
2020.

[31] Sayma Akther, Nazir Saleheen, Shahin Alan Samiei, Vivek Shetty, Emre
Ertin, and Santosh Kumar. moral: An mhealth model for inferring
oral hygiene behaviors in-the-wild using wrist-worn inertial sensors.

1102



LiT: Fine-grained Toothbrushing Monitoring with Commercial LED Toothbrush ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 3(1):1–25, 2019.

[32] Muhammad Fahim, Vishal Sharma, and Trung Q Duong. A wearable-
based preventive model to promote oral health through personalized
notification. In 2022 44th Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), pages 4282–4285.
IEEE, 2022.

[33] Takuma Yoshitani, Masa Ogata, and Koji Yatani. Lumio: a plaque-
aware toothbrush. In Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pages 605–615,
2016.

[34] Ana Caraban, Maria José Ferreira, Rúben Gouveia, and Evangelos
Karapanos. Social toothbrush: fostering family nudging around tooth
brushing habits. In Adjunct proceedings of the 2015 acm international
joint conference on pervasive and ubiquitous computing and proceedings
of the 2015 acm international symposium on wearable computers, pages
649–653, 2015.

[35] Kaixin Chen, Yongzhi Huang, Yicong Chen, Haobin Zhong, Lihua Lin,
Lu Wang, and Kaishun Wu. Lisee: A headphone that provides all-day
assistance for blind and low-vision users to reach surrounding objects.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 6(3):1–30, 2022.

[36] Tobias Röddiger, Christopher Clarke, Paula Breitling, Tim Schneegans,
Haibin Zhao, Hans Gellersen, and Michael Beigl. Sensing with ear-
ables: A systematic literature review and taxonomy of phenomena.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 6(3):1–57, 2022.

[37] Zhijian Yang, Yu-Lin Wei, Sheng Shen, and Romit Roy Choudhury.
Ear-ar: indoor acoustic augmented reality on earphones. In Proceedings
of the 26th Annual International Conference on Mobile Computing and
Networking, pages 1–14, 2020.

[38] Xieyang Xu, Yang Shen, Junrui Yang, Chenren Xu, Guobin Shen, Guo-
jun Chen, and Yunzhe Ni. Passivevlc: Enabling practical visible light
backscatter communication for battery-free iot applications. In Proceed-
ings of the 23rd Annual International Conference on Mobile Computing
and Networking, pages 180–192, 2017.

[39] Minhao Cui, Qing Wang, and Jie Xiong. Radioinlight: doubling the
data rate of vlc systems. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, pages 615–627, 2021.

[40] Chi Lin, Yongda Yu, Jie Xiong, Yichuan Zhang, Lei Wang, Guowei
Wu, and Zhongxuan Luo. Shrimp: a robust underwater visible light
communication system. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, pages 134–146, 2021.

[41] Zhao Tian, Kevin Wright, and Xia Zhou. The darklight rises: Visible
light communication in the dark. In Proceedings of the 22nd Annual
International Conference on Mobile Computing and Networking, pages
2–15, 2016.

[42] Song Liu and Tian He. Smartlight: Light-weight 3d indoor localization
using a single led lamp. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems, pages 1–14, 2017.

[43] Chi Zhang and Xinyu Zhang. Litell: Robust indoor localization using
unmodified light fixtures. In Proceedings of the 22nd Annual Interna-
tional Conference on Mobile Computing and Networking, pages 230–242,
2016.

[44] Chi Zhang and Xinyu Zhang. Pulsar: Towards ubiquitous visible light
localization. In Proceedings of the 23rd Annual International Conference
on Mobile Computing and Networking, pages 208–221, 2017.

[45] Tianxing Li, Chuankai An, Zhao Tian, Andrew T Campbell, and Xia
Zhou. Human sensing using visible light communication. In Proceed-
ings of the 21st Annual International Conference on Mobile Computing
and Networking, pages 331–344, 2015.

[46] Tianxing Li, Qiang Liu, and Xia Zhou. Practical human sensing in the
light. In Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services, pages 71–84, 2016.

[47] Raghav H Venkatnarayan and Muhammad Shahzad. Gesture recogni-
tion using ambient light. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2(1):1–28, 2018.

[48] Zimo Liao, Zhicheng Luo, Qianyi Huang, Linfeng Zhang, Fan Wu,
Qian Zhang, and Yi Wang. Smart: screen-based gesture recognition
on commodity mobile devices. In Proceedings of the 27th Annual
International Conference on Mobile Computing and Networking, pages
283–295, 2021.

[49] Dong Ma, Guohao Lan, Mahbub Hassan, Wen Hu, Mushfika B Upama,
Ashraf Uddin, andMoustafa Youssef. Solargest: Ubiquitous and battery-
free gesture recognition using solar cells. In The 25th annual inter-
national conference on mobile computing and networking, pages 1–15,
2019.

[50] Chi Zhang, Josh Tabor, Jialiang Zhang, and Xinyu Zhang. Extending
mobile interaction through near-field visible light sensing. In Proceed-
ings of the 21st Annual International Conference on Mobile Computing
and Networking, pages 345–357, 2015.

[51] Song Liu and Tian He. Bitlight: Turning dlp projections into an inter-
active surface through bit-level light encoding. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(4):1–23,
2020.

[52] Hangcheng Cao, Daibo Liu, Hongbo Jiang, Ruize Wang, Zhe Chen,
and Jie Xiong. Lipauth: Hand-dependent light intensity patterns for
resilient user authentication. ACM Transactions on Sensor Networks,
2022.

[53] Yongzhi Huang, Kaixin Chen, Lu Wang, Yinying Dong, Qianyi Huang,
and Kaishun Wu. Lili: liquor quality monitoring based on light signals.
In Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking, pages 256–268, 2021.

[54] Yongzhi Huang, Kaixin Chen, Jiayi Zhao, Lu Wang, and Kaishun Wu.
Beverage deterioration monitoring based on surface tension dynam-
ics and absorption spectrum analysis. IEEE Transactions on Mobile
Computing, 2023.

[55] Tauhidur Rahman, Alexander T Adams, Perry Schein, Aadhar Jain,
David Erickson, and TanzeemChoudhury. Nutrilyzer: Amobile system
for characterizing liquid food with photoacoustic effect. In Proceedings
of the 14th ACM Conference on Embedded Network Sensor Systems CD-
ROM, pages 123–136, 2016.

[56] HaiyanHu, Qianyi Huang, andQian Zhang. Babynutri: A cost-effective
baby food macronutrients analyzer based on spectral reconstruction.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 7(1):1–30, 2023.

[57] Tianming Zhao, Yan Wang, Jian Liu, Jerry Cheng, Yingying Chen, and
Jiadi Yu. Robust continuous authentication using cardiac biometrics
fromwrist-worn wearables. IEEE Internet of Things Journal, 9(12):9542–
9556, 2021.

[58] Fei Gao, Qiwen Peng, Xiaohua Feng, Bo Gao, and Yuanjin Zheng.
Single-wavelength blood oxygen saturation sensing with combined
optical absorption and scattering. IEEE Sensors Journal, 16(7):1943–
1948, 2015.

[59] Nam Bui, Nhat Pham, Jessica Jacqueline Barnitz, Zhanan Zou, Phuc
Nguyen, Hoang Truong, Taeho Kim, Nicholas Farrow, Anh Nguyen,
Jianliang Xiao, et al. ebp: A wearable system for frequent and com-
fortable blood pressure monitoring from user’s ear. In The 25th annual
international conference on mobile computing and networking, pages
1–17, 2019.

[60] Yetong Cao, Huijie Chen, Fan Li, and Yu Wang. Crisp-bp: Continuous
wrist ppg-based blood pressuremeasurement. In Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking,

1103



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Kaixin Chen1, Lei Wang1, Yongzhi Huang2,3, Lu Wang1,∗, Kaishun Wu2,3

pages 378–391, 2021.
[61] Tianming Zhao, Yan Wang, Jian Liu, and Yingying Chen. Your heart

won’t lie: Ppg-based continuous authentication on wrist-worn wear-
able devices. In Proceedings of the 24th Annual International Conference
on Mobile Computing and Networking, pages 783–785, 2018.

[62] Takahiro Hashizume, Takuya Arizono, and Koji Yatani. Auth ‘n’scan:
Opportunistic photoplethysmography in mobile fingerprint authen-
tication. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 1(4):1–27, 2018.

[63] Ada. brushing your teeth. https://www.mouthhealthy.org/-
/media/project/ada-organization/ada/mouthhealthy/files/activity-
sheets/adahowtobrush_eng.pdf, 2023.

[64] Ada. prevention and education. https://www.ada.org/advocacy/
prevention-and-education, 2023.

[65] Clínica médico dental pardiñas. tooth brushing – how to brush your
teeth. https://www.youtube.com/watch?v=olsUdRrYY70, 2023.

[66] Wikidoc. tooth brushing. https://www.wikidoc.org/index.php/Tooth_
brushing, 2023.

[67] Joseph M Kahn and John R Barry. Wireless infrared communications.
Proceedings of the IEEE, 85(2):265–298, 1997.

[68] Zabih Ghassemlooy, Wasiu Popoola, and Sujan Rajbhandari. Optical
wireless communications: system and channel modelling with Matlab®.
CRC press, 2019.

[69] Abitelax. f7 blue light sterilization electric toothbrush. https://www.
moboplus.hk/product/669869, 2023.

[70] Frank Lippert. An introduction to toothpaste-its purpose, history and
ingredients. In Toothpastes, volume 23, pages 1–14. Karger Publishers,
2013.

1104

https://www.mouthhealthy.org/-/media/project/ada-organization/ada/mouthhealthy/files/activity-sheets/adahowtobrush_eng.pdf
https://www.mouthhealthy.org/-/media/project/ada-organization/ada/mouthhealthy/files/activity-sheets/adahowtobrush_eng.pdf
https://www.mouthhealthy.org/-/media/project/ada-organization/ada/mouthhealthy/files/activity-sheets/adahowtobrush_eng.pdf
https://www.ada.org/advocacy/prevention-and-education
https://www.ada.org/advocacy/prevention-and-education
https://www.youtube.com/watch?v=olsUdRrYY70
https://www.wikidoc.org/index.php/Tooth_brushing
https://www.wikidoc.org/index.php/Tooth_brushing
https://www.moboplus.hk/product/669869
https://www.moboplus.hk/product/669869

	Abstract
	1 Introduction
	2 Related Work
	3 Basics and Hardware Design
	3.1 Bass Technique
	3.2 Structure of Oral Cavity
	3.3 Toothbrush Head Luminous Properties
	3.4 Hardware Design

	4 Channel model of blue light in oral cavity
	4.1 Single Light Channel Model
	4.2 Dynamic Light Intensity Function
	4.3 Numerical Simulation Results

	5 Measurement and Analysis
	5.1 Effect of Vibration
	5.2 Characteristics of Brushing 
	5.3 Effect of Ambient Light
	5.4 Effect of Toothpaste
	5.5 Signal of 16 Bass Technique Surfaces
	5.6 User Variability

	6 FRAMEWORK
	6.1 Brushing Signal Segmentation
	6.2 Ambient Light Interference Cancellation
	6.3 Feature Extraction
	6.4 Classification

	7 SYSTEM EVALUATION
	7.1 Experimental Setup
	7.2 Toothbrushing Monitoring Performance
	7.3 Robustness
	7.4 Generalization to Any Toothpaste
	7.5 Extension to Other Toothbrushes

	8 Conclusion and Future Work
	Acknowledgments
	References

