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Abstract
Ambient backscatter communication (AmBC) 

has emerged as a promising paradigm for enabling 
sustainable low-power operation of Internet of 
Things devices. This is due to its ability to enable 
sensing and communication through backscatter-
ing ambient wireless signals (e.g., WiFi and TV sig-
nals). But a great impediment to AmBC-enabled 
networks is the difficulty in decoding the backscat-
ter signals because the ambient signals are usually 
modulated and meant for other legacy receivers 
rather than AmBC devices. Drawing from the 
ability of machine learning (ML) to enhance the 
performance of wireless communication systems, 
some ML-aided techniques have been developed 
to assist signal detection in AmBC. Hence, this 
article aims to provide a comprehensive overview 
of the subject by describing the operation of the 
AmBC network, highlighting the major challenges 
to signal detection in AmBC, discussing and com-
paring the performance of some existing ML-as-
sisted solutions to AmBC signal detection, and 
highlighting some future research that could be 
carried out on the subject. 

Introduction
The Internet of Things (IoT) will drastically revolu-
tionize human-to-human (H2H), human-to-device 
(H2D), and machine-to-machine (M2M) interac-
tions in the near future. This will lead to myriad 
intelligent pervasive applications in various sec-
tors of human life including agriculture, transpor-
tation, commerce, and healthcare [1]. The key to 
enabling such applications is addressing the limited 
energy problem of IoT devices. Recently, ambient 
backscatter communication (AmBC) has emerged 
as a strong contender for enabling low-power and 
sustainable operation of IoT devices.

Backscatter communication (BackCom) involves 
the transmission of sensed data at a backscatter 
device (BD) or tag by modulating it into an incident 
signal from a source (or reader) and reflecting the 
modulated incident signal to a receiver. This allows 
the BD to sense data and transmit signals without 
actively generating a carrier signal, thereby provid-
ing a very low-powered means of sensing and com-
munication and also enabling the development of 
battery-free sensors. To enable battery-free opera-
tion, the BD harvests energy from the incident sig-
nal and stores it in capacitors for powering the BD’s 
operation. To enhance the sustainable operation 
of the BDs, energy harvesting (EH) techniques [2] 

have been developed to supplement that harvested 
from the incident ambient signal. In addition to the 
benefits of traditional BackCom, AmBC, shown in 
Fig. 1, leverages ambient wireless signals (e.g., WiFi, 
GSM, TV, and FM radio) as an incident signal at the 
BD for modulating sensed data. This eliminates the 
need to deploy a dedicated source for carrier gen-
eration and further decreases the cost of deploying 
sensors in the IoT ecosystem [2].

Despite the benefits that come along with 
deploying AmBC in wireless networks, decoding 
the backscatter signal at the receiver is challeng-
ing due to various reasons. They include interfer-
ence at the receiver from direct path signal [3], 
challenges in backscatter channel estimation [3], 
low strength of backscatter signal at the receiv-
er [4], absence of a distributed multiple access 
control (MAC) protocol [4], and complex oper-
ation dynamics of AmBC network components. 
Techniques to address these challenges have been 
developed, but further work to minimize the chal-
lenges is still required. Hence, considering the 
ability of machine learning (ML) techniques to 
leverage trained models for improving wireless 
communication systems [5], several works have 
developed ML-based solutions to address the 
problem of signal detection in the AmBC network 
[6–13] despite being in early stages of deploy-
ment. To provide a comprehensive view of the 
subject, this article aims to bring a survey of the 
existing ML-based solutions and also provides a 
discussion of future research on the subject.

The article is structured as follows. First, we give 
an introduction to ML-assisted signal detection in 
AmBC. The operation of AmBC is described. Then 
we discuss the bottlenecks to signal detection in 
the AmBC network. Some existing ML-assisted 
signal detection solutions are discussed. Further, a 
comparison of the performance of existing tech-
niques in assisting signal detection in AmBC is pre-
sented. We describe some future research that 
could further enhance ML-assisted signal detec-
tion. Lastly, we conclude the article.

Overview on AmBC Network Operation
This section explains the operation principle of an 
AmBC network.

The AmBC network consists of an ambient 
source, a BD, and a receiver, as shown in Fig. 
1a. At the top level, AmBC operates just like a 
heliograph. The ambient source transmits signals 
that are meant for other legacy devices such as 
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mobile phones, TV, and FM radio. When the 
ambient signals are incidental to the BD, they pro-
vide two main functions: to serve as an energy 
source and serve as a carrier signal for modulating 
sensing data. As an energy source, the ambient 
signals will be converted into electrical energy 
and stored in capacitors or small batteries. For 
modulating sensing data, a technique called load 
modulation is leveraged to enable sensing data 
at the BD to be reflected toward a receiver. Load 
modulation involves switching the impedance of 
the BD between various states based on the value 
of data to be transmitted by the BD. Since the 
weak incident signals at the BD are on the same 
channel as the received signals at legacy devic-
es, the BD could apply some techniques that can 
move the backscatter signal to a different channel 
to avoid co-channel interference. Further, the BD 
could amplify the signal strength of the reflected 
signal to lessen the impact of fading on its path 
to the receiver. At the receiver, the backscatter 
signal is decoded to extract the sensing data. 
Since the receiver could be a device with high 
computational resources such as mobile phones 
and computers, they allow signal processing and 
ML techniques to be adopted by the receiver for 
enhanced signal detection. 

Bottlenecks to Signal Detection 
in AmBC Networks

This section identifies and describes some of 
the most critical challenges to signal detection 
in AmBC networks. The challenges are arranged 
based on the OSI layer of the network they affect. 
These challenges are shown in Fig. 3:
•	 Direct path signal interference (physical 

layer): As shown in Fig. 1a, the stronger 
direct path signal and the weaker backscatter 
signals are picked up by the same receiver. 
Since there are transmission channels from 
the ambient source to the BD and receiv-
er, co-channel interference will occur at the 
receiver of AmBC systems that do not have 
techniques to combat this type of interfer-
ence. Although some BDs can shift the back-
scatter signal to another channel, techniques 
to nullify or avoid the stronger direct path sig-

nals are required for efficient signal detection.
•	 Low strength of backscatter signal (physical 

layer): Naturally, wireless signals will fade 
over distance. In conventional communica-
tion systems, signal strength will degrade 
with the inverse of squared distance. How-
ever, since AmBC consists of the incident 
signal and backscatter signal paths, the dou-
bly faded backscatter signal at the receiver 
becomes very weak (sometimes beyond the 
noise floor) at the receiver. This leads to diffi-
culty in signal detection at the receiver. 

•	 Backscatter channel estimation (physical layer): 
Channel estimation at the receiver is a vital 
process in wireless communication for ensur-
ing accurate decoding of the received signal. 
For that, the receiver needs to have access 
to the channel via which data is transmitted. 
In the AmBC system shown in Fig. 1a, the 
receiver does not have access to the channel 
between the ambient source and BD. This 
results in challenges in estimating the back-
scatter channel and hence signal detection.

•	 Absence of MAC protocol (MAC layer): 
Since the ambient sources in AmBC are 
meant for other legacy devices, they do not 
provide MAC for BDs. Further, the AmBC 
network could consist of multiple BDs that 
leverage the same ambient source for sens-
ing and communication. In such scenarios, 
the tags could transmit data to the receiver 
in a multihop or single-hop manner. In sin-

FIGURE 1. AmBC system model showing signal strengths at various positions with free space loss.

FIGURE 2. Operation of AmBC.
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gle-hop transmission, the BDs could transmit 
at the same time slots, leading to collisions 
at the receiver. In multihop transmission, the 
order of packet transmission between tags 
could be distorted, preventing correct data 
from reaching the receiver.

•	 Dynamics of AmBC network components 
(network layer): The benefits of eliminating 
a dedicated source in AmBC come at the 
expense of having to consider the operation 
of the ambient source when designing signal 
detection techniques. This is more compli-
cated when the signal source is a smart inter-
ferer whose operation is difficult to predict. 
Hence, an efficient signal detection technique 
in AmBC requires cognizance of the dynamic 
operations of both ambient sources and BDs.

Existing Solutions
In this section, we shed light on several attempts 
to address the bottlenecks of signal detection in an 
AmBC network using various ML-based techniques. 
The solutions are discussed based on the category 
of underlying ML algorithms adopted. Also, a com-
parison of the solutions is shown in Table 1. 

Unsupervised Learning
In order to develop a technique for detecting 
reflected ambient signals without the need for 
channel estimation, the authors of [6] leveraged 
the clustering phenomenon. The clustering phe-
nomenon in the AmBC system network allows 
reflected signals from tags (or BD) to naturally fall 
into clusters at the receiver. The clusters are formed 
based on the type of information contained in the 
reflected signal. Hence, the authors developed an 
AmBC network that adopts amplitude modulation 
at the tag. The amplitude modulation adopted 
allows the tag to assign two distinct energy levels to 
the reflected signal, which will eventually form two 
clusters at the receiver. Then unspervised learn-

ing (UL) algorithms based on expectation maximi-
zation (EM) were used to classify and detect the 
transmitted data from the tag. In order to optimize 
the detection thresholds, learned parameters from 
the developed algorithms were used to obtain a 
minimum bit error rate (BER).

Similarly, the author of [7] leveraged UL to aid 
signal detection in AmBC. Rather than exploiting 
the clustering phenomenon of AmBC, joint coher-
ent signal estimation and detection at the receiver 
were leveraged. The AmBC network was modeled 
with an orthogonal frequency-division multiplex-
ing (OFDM)-enabled source, a BD, and a receiver. 
Since coherent backscatter signal detection requires 
the channel state information (CSI) of the backscat-
ter device, a matched filter was used at the back-
scatter device to estimate the carrier CSI from the 
source. The estimated carrier CSI is then used at the 
receiver to efficiently estimate the backscatter signal. 
Due to the computational complexity of decoding 
at the receiver, an EM-based algorithm with com-
plexity linear to the length of OFDM was developed 
to aid the detection of backscatter signals.

UL learns patterns from unlabeled data and thus 
is suitable for signal detection in AmBC without 
channel estimation. However, if the wireless environ-
ment becomes complicated, there is little room for 
improvement. To achieve high signal detection accu-
racy, traditional signal processing techniques, such 
as de-noising and signal estimation, are required to 
better estimate and detect the ambient signals. With 
advanced signal processing techniques, the detec-
tion efficiency and accuracy can be much improved. 

Supervised Learning
Considering tag signal detection as a classification 
task, the authors of [8] deployed supervised learn-
ing (SL) algorithms (support vector machines and 
random forest) for backscatter tag signal detec-
tion. Simple conventional signal detectors in AmBC 
use energy detection to identify transmitted tag 
symbols (0 and 1) that signify backscatter and 
non-backscatter states. However, the energy detec-
tion techniques suffer due to the low signal-to-noise 
ratio (SNR) of backscatter path signals. Hence, the 
authors used the received signals and tag symbols 
as training data and labels, respectively. The tag first 
transmits some labeled symbols for training at the 
receiver. Then the trained model is used to detect 
tag data by classifying the received data into two 
groups corresponding to 0 and 1. The proposed 
SL-based detection showed better performance 
(low BER) in low SNR conditions over conventional 
energy-detection-based tag signal detection. 

Leveraging the clustering phenomenon from 
a different perspective, the authors of [9] devel-
oped an SL-like technique to aid the detection of 
backscatter signals without the need for channel 
estimation. In the adopted model, a multi-anten-
na receiver was deployed to decode backscatter 
signals from a modulated RF source through a tag. 
Since decoding clustered received data is tasking, 
the authors proposed a label-assisted clustering 
technique. In the proposed technique, the tag 
assigns known labels before each data transmis-
sion. Hence, the received data will fall into clusters 
based on the known labels. An EM algorithm with 
less complexity due to modulation constraints from 
the tag and RF source was used to learn parame-
ters that are then used to decode the transmitted 

FIGURE 3. Bottlenecks to signal detection in AmBC networks.
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signal. This technique achieved similar results to an 
optimal detector with perfect CSI.

SL algorithms are commonly used for classifi-
cation, regression, and recognition tasks. Thus, it 
is effective to address signal interferences and esti-
mate wireless channels. But it requires data training 
in advance, and the model training is highly depen-
dent on the wireless environment. SL itself does not 
have much room for improvement when applied 
to another environment. With the help of transfer 
learning (TL), training knowledge can be stored 
and applied to a different wireless environment for 
interference cancellation and channel estimation.

Reinforcement Learning
An AmBC network contains multiple (AmBC and 
legacy) devices coexist in a heterogeneous way, 
making the interaction between those devices 
difficult due to interference. In order to address 
this problem, the authors of [10] proposed a soft-
ware-defined networking (SDN)-based AmBC net-
work. However, the SDN-based AmBC network 
needs to learn from the operating environment 
in order to manage interference. Hence, a rein-
forcement learning (RL) technique was developed 
to achieve optimal rewards. The RL technique 
enabled efficient interference management by 
controlling the transmit power levels of heteroge-
neous devices. Results of the SDN-based AmBC 
showed improved performance among legacy 
devices and ensured the required quality of ser-
vice (QoS) for AmBC devices.

In order to explore the ability to combine RL and 
game theory for avoiding interference, the authors 
of [11] developed a technique for detecting back-
scatter signals in the presence of a smart interferer. 
In order to achieve that, the interaction between an 
interferer and the AmBC system was modeled as a 
game. Since the AmBC device’s operation time is 
divided into energy harvesting time (EHT) and back-
scatter time (BT), those time durations were con-
sidered when developing the utility functions. For 
each sub-game, RL was used to obtain the optimal 
policy for the game due to the non-availability of the 
interferer operation times. The developed technique 
showed better signal detection when compared to 
techniques that consider random and fixed BTs.

RL has the ability to interact with the environ-
ment; thus, it is suitable to fight against dynamics 
of network components and detect AmBC signals 
in the presence of interference. However, if the 
network is complex and large-scale, the state and 
action spaces are usually large in AmBC networks, 

and RL may not be able to find the optimal policy 
in a reasonable time and thus deteriorate the per-
formance. Possible solutions may involve a type of 
deep learning (DL), known as deep reinforcement 
learning (DRL), to deal with such scenarios. 

Deep Learning
As a novel technique with strong ability to extract 
features from data, the authors of [12] developed 
a deep transfer learning (DTL) framework. DTL 
involves adopting a deep neural network (DNN) 
to extract the features of the received signal at 
the tag without the need for CSI. But in order to 
capture the time-varying conditions of the AmBC 
channel and avoid the need for large training data 
required to achieve low BER, the authors adopt-
ed offline learning, transfer learning, and online 
tag data detection. Hence, the tag parameters 
learned during the offline tag detection are trans-
ferred for use in detecting the parameters of other 
related tags in real time. Simulation results of the 
proposed framework showed near-optimal perfor-
mance when compared to perfect CSI conditions.

On the other hand, the authors of [13] lever-
aged deep residual learning to estimate CSI and 
enhance signal detection in AmBC. Since channel 
estimation in AmBC is challenging, the authors 
modeled it as a denoising problem. In the model, 
a CNN was used to directly recover the channel 
coefficients (in time and frequency domains) from 
the received pilot signals at the receiver. Simulat-
ed results of the proposed model showed similar 
results to systems with an optimal minimum mean 
square error (MMSE) estimator.

As DL has a strong ability to extract features, it 
is feasible to apply DL for channel estimation in a 
complex AmBC environment. DL has the potential 
to achieve high estimation accuracy. The only prob-
lem is that it requires a very large amount of data, 
and it is extremely expensive to train due to com-
plex data models. Therefore, reducing the computa-
tional expense is indispensable for AmBC networks.

Case Study: Conventional vs.  
ML-Assisted Detection

In this section, we compare the performance of a 
conventional signal detection technique with some 
ML-assisted signal detection techniques of AmBC 
models. The conventional signal detection tech-
nique considered is the rule-based signal processing 
of an FM radio demodulator, while the considered 
ML-assisted techniques are UL [6], SL [9], and DL 

TABLE 1. Comparison of existing solutions.

Reference ML category Phenomenon employed to aid signal detection Main bottleneck(s) addressed

[6] UL Clustering of received signals Backscatter channel estimation

[7] UL Joint coherent signal detection and channel estimation Backscatter channel estimation

[8] SL Varying energy levels of received data Direct-path signal interference, low strength of backscatter signal

[9] SL Label-assisted clustering of received signal Backscatter channel estimation

[10] RL Varying transmit power levels in an SDN-based AmBC network Direct-path signal interference, low strength of backscatter signal

[11] RL Autonomous environment learning Dynamics of AmBC network components

[12] DL Feature extraction and transfer learning Backscatter channel estimation

[13] DL Feature extraction and residual learning Backscatter channel estimation
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[12]. To efficiently characterize the performance, 
we consider the type of ambient source, the mod-
ulation at the ambient source, and the SNR at the 
receiver as the AmBC model parameters. 

The conventional model considered in this sec-
tion is an AmBC system that exploits ambient FM 
radio signals as the source of excitation. The system 
is modeled and developed using the communica-
tion toolbox of Simulink. The FM message signal 
is modeled as a sequence of randomly generated 
bits, while a carrier signal of 90 MHz is generated 
at the transmitter. The modulated FM signal is trans-
mitted over a fading channel to the BD and then 
to the receiver. At the receiver, we set the SNR to 
10 dB in order to observe the demodulated results.

The BER is used as the performance metric 
in the experiment. For the conventional system, 
the original transmitted bits (message signal) were 
compared to the decoded bits at the FM demod-
ulator to obtain the BER of the system. For the 
ML-assisted techniques [6, 9, 12], we obtained 
the results (BER) of those systems where the 
AmBC systems designed adopted signal detection 
schemes at the receiver with an SNR of 10 dB 
and fading ambient signals. 

The FM radio-based AmBC simulation parame-
ters, and the results of existing solutions are shown 
in Table 2. The results show that the conventional 
detection method of the FM radio-based AmBC 
has the highest BER compared to other ML-assist-
ed techniques. This is because the demodulator 
adopts rule-based (signal processing) techniques 
to detect the transmitted signal. However, the BER 
can be improved when advanced signal processing 
techniques are adopted. We also observe that the 
BER values show significant improvement with the 
adoption of ML techniques at the receiver. Further-
more, the DL method shows the best performance 
over the other ML techniques due to its strong 
feature extraction ability when properly modeled 
according to the application scenario. Hence, 
we conclude that ML-assisted signal detection 
improves the performance of AmBC networks.

Future Work
This section discusses some open research issues 
related to signal detection in the AmBC network and 
possible suggestions on how to address those issues.
•	 Accuracy vs. energy trade-off: While improv-

ing the accuracy of ML techniques for back-
scatter signal detection is desired, the limited 
power budget of AmBC devices is still a bot-
tleneck to BDs. This becomes more evident 
when a wearable device is used as a receiv-
er for backscatter signal detection. In such a 
scenario, leveraging an ML-assisted technique 

for signal detection requires training a model 
deployed on the wearable device with some 
size of a dataset. The higher the amount of 
training data, the more accurate the model 
will perform while increasing the power con-
sumption of the already power-stretched 
wearable device. Hence, considering both 
ends of the situation, future ML-assisted 
techniques need to deploy low training data 
in order to achieve appreciable detection 
accuracy without overstretching the power 
demands of AmBC receivers.

•	 Intelligent non-coherent techniques: Non-co-
herent signal detection techniques have 
shown promising results when applied in 
detecting AmBC signals despite their non-de-
pendence on channel estimation. Despite 
that, there is still a need to develop ML-as-
sisted techniques that can capture the com-
plexities of the AmBC network, from the 
properties of the channels (incident path and 
backscatter path) of AmBC, the dynamics of 
an incident signal from an ambient source, 
the interaction between components (ambi-
ent source, backscatter device, and interfer-
er) of the AmBC network to the operation 
of the backscatter tags itself. Incorporating 
these parameters in designing non-coher-
ent signal detection techniques will further 
enhance its appeal for adoption in AmBC 
networks. Pioneering work by the authors 
of [14] showed the promise of incorporating 
channel properties (time-selective fading) in 
improving signal detection.

•	 Intelligent re-configurable architecture of 
the receiver: The existing ML-assisted tech-
niques involve the development and training 
of models that inherently affect the soft-
ware architecture of the AmBC receiver. In 
other words, the hardware architecture of 
the AmBC receiver does not incorporate 
some elements of intelligent reconfigurabili-
ty. Developing hardware architectures at the 
receiver that can optimize the signal detec-
tion process at the receiver due to available 
energy, modulation adopted by the back-
scatter tag, and CSI will certainly enhance 
the overall detection process at the receiver. 
For instance, AmBC systems have shown the 
promise of enhanced signal detection when 
multiple tag antennas are adopted [15]. With 
many ambient sources, such as WiFi access 
points and cellular base stations, adopting 
OFDM, the benefits of channel diversity can 
be fully leveraged in AmBC signal detection 
by adopting multiple antennas at the source, 
tag, and receiver of an AmBC network to 
achieve higher throughput and lower BER.

Conclusion
Addressing the signal detection problem of AmBC 
will go a long way in enhancing its appeal for 
enabling sustainable communication networks. 
The comprehensive discussion presented in this 
article addresses the contributors to difficulty in sig-
nal detection and explicitly describes how existing 
solutions leveraged ML to assist signal detection. 
Lastly, the future research issues discussed provide 
possible succinct ways of improving ML-assisted 
signal detection. The results in our case study show 

TABLE 2. Performance comparison of signal detection techniques.

Reference
Detection 
technique

Model properties Result (BER)

Simulated
Signal 

processing
Ambient RF source, modulation: FM,
carrier frequency: 90 MHz, SNR:10 dB

0.6536

[6] UL Ambient RF source, modulation: QPSK, SNR:10 dB 0.04

[9] SL
Ambient RF source, modulation:16-QAM, 

SNR:10 dB
0.007

[12] DL Ambient RF source, modulation: QPSK, SNR:10 dB 0.0008
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that DL techniques have shown great improve-
ments in solving the signal detection problem. 
However, to characterize how well the different 
sub-categories of DL models solves the problem in 
different AmBC models needs further investigation, 
which can be pursued in future work. 
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