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ABSTRACT 

Strength training is essential for both physical and mental well-

being. Muscular mass and strength gain can help with weight loss, 

balance improvement, and fall prevention. The neuromuscular 

connection, or mind-muscle connection, is critical for improving 

strength training performance. However, many fitness trackers and 

applications are missing a feature that allows users to track their 

neuromuscular workout performance. The goal is to immerse the 

user experience while keeping the cost and size of the healthcare 

device to a minimum. A wearable EEG hairband and EMG shirt are 

outfitted with dry and non-invasive bio-signal detecting that 

securely attaches to the body’s surface during exercise. Participants 

in our study are exposed to five upper-limb free-weight exercises. 

The result shows that low-intensity exercise can increase upper-

limp muscle contraction by over 30%, and individuals with mental 

effort have an average precision of 81%. 
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1  Introduction 

Strength training has been the most attractive exercise in the past 

decade. It is standardly used for training to develop muscle 

strength, muscle mass, and joint strength. In the actual situation, the 

exercise goal varies among people. Each exercise program has a 

different result in the long term, but everyone wants to train each 

time effectively. On the other hand, the term ‘exercise 

effectiveness’ has various definitions depending on the programs. 

National Strength and Conditioning Association or NSCA has 

defined four specific goals: endurance, hypertrophy, maximum 

strength, and power [1]. So, the number of repetitions and weight 

needs to be adjusted for each plan. However, many people fail to 

track their exercise effectiveness in various mediums that 

sometimes do not match their goals. This paper aims to track the 

exercise effectiveness for strength training in hypertrophy through 

mind-muscle connection. We moreover raise the issue between 

heavy-load exercise and exercise effectiveness that we should or 

should not lift heavyweight to get the most effective hypertrophy 

training [4]. Therefore, we present wearable devices to detect the 

mental effort on strength training based on the mind-muscle 

connection, as shown in Figure 1(a). We propose our custom design 

of a low-cost dry non-invasive EMG sensing electrode that is 

highly conductive. The system is a wearable that (1) detects the 

mental effort of strength training, (2) captures EEG and EMG 

signals simultaneously along with performing the exercise, and (3) 

analyzes users’ high mental effort regarding the muscle 

contraction. 

2  System Architecture 

An integrated wireless transmission terminal circuit was placed on 

the back of the headset and t-shirt. The EEG signals (collected by 

NeuroSky TGAM1) and the EMG signal pass through an analog  

front-end, band-pass hardware filter, signal amplifier, and a 512 Hz 

A/D converter to enable reliable recording of small-amplitude 

signals in a frequency range of 0.5–50 Hz. The EEG and EMG 

signals were transmitted to a microprocessor (STM32F103RCT6, 

32-bit ARM Cortex-M4) and transferred by Bluetooth (serial 

module HC-05). Each exercise repetition length was trimmed by 

adaptive sliding window segmentation into n windows where n=12 

to ensure signal equal length. In Figure 1(b), we find the mean 

frequency of EMG signals in each window.  Also, we window the 

EEG signal by FFT at [1: 30] Hz in Figure 1(c). To extract the 

mental effort of the motion state, we apply the attention-based 

models [3] through the normalized softmax of the mean frequency 

(MNF) from the last four data sequences and obtain the EEG input 

data sequence through the vector product as shown in Figure 1(d). 
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Finally, the extracted EEG frequency data was processed by the 

LSTM model. Then, the output of the LSTM vectors is selected as 

the fully connected neural network’s input parameters. The hidden 

layer is followed by a 20% dropout layer, a fully connected layer 

with 300 hidden units, and a final linear layer with two outputs 

corresponding to the two classes, “high mental effort” and “low 

mental effort.” 

 

Figure 1: (a) The proposed wearable biometric sensing. (b) 

EMG and (c) EEG sequences were trimmed, (d) derive EEG 

during more muscular activities through the attentional model. 

3  Experiment and Evaluation  

Ten healthy male subjects were recruited, and informed consent 

was obtained before collecting data about our exact purpose in the 

experiment. We do physical checking on all subjects who 

underwent a strength assessment under NSCA [1]. Experiment 

ground truth findings align with the constrained action as clinical 

research in resistant training and weightlifting [3,4]. Participants 

performed five isolated exercises with dumbbells weighted with a 

mass equivalent to the estimated 67% and 85% bilateral maximal 

force according to NSCA recommended of a person’s 1RM [1]. 

Reminders regarding the mental effort condition (with or without) 

were given before each session with the 5 minutes rest periods. 

Each subject performed ten repetitions of each exercise in each 

session, resulting in 200 repetitions under both conditions.  

    We divided the evaluation into two categories, i.e., system 

robustness and user impact. System robustness examines the 

accuracy of mental effort detection across subjects in practical 

scenarios, while the user impact studies the relationship between 

users’ mental effort and muscles during exercise.  To evaluate the 

system’s robustness, we use precision and specificity as criteria of 

corrected recognized performance of mental effort. In this context, 

precision indicates how many total positives of the actual mental 

effort were detected. Specificity measures the performance of 

recognized non-mental effort exercises. Figure 2(a) summarizes the 

recognition results for the high mental effort across the subjects—

the averaging precision of 81%. The average per maximal force 

classification accuracy exceeds 70% for all conditions. As shown, 

4 out of 10 subjects achieve 90% precision while the other three 

subjects achieve a precision of 70% at 67%RM. The muscle 

contraction (%) across subjects indicates result in Figure 2(b) that 

all subjects surpass the minimum at 30% MVC from normalizing 

EMG signal, which means training with mental effort can guarantee 

the strength gaining in 6 weeks around 20 ± 8% (P = 0.01) [3]. We 

examine muscle activation to provide a detailed look at the exercise 

effectiveness of each session. We use no weight movement as a 

baseline of muscle contraction against mental effort exercise at 

67%RM and 85%RM. Here, at 67%, RM averages 43.47%, yet at 

85%, RM is contracting only 32.08%. The result in Figure 2(b) 

illustrates the muscle contraction (%) across subjects. The overall 

impact of muscle contraction surpasses 30 % as required for mental 

effort exercise. Then we further investigate with the two-way 

ANOVA test. We test the high mental effort group’s result in 67% 

and 85% Rm, both EEG and EMG signals. The test priori power is 

strong 0.899 in factor – EEG, factor – EMG, and interaction. These 

results validate that the biometric device enables simultaneous EEG 

and EMG signals to detect mental effort.  

 

Figure 2: (a) Accuracy of high mental effort detection across 

subjects. (b) Muscle contraction across subjects 

4  Conclusion   

We introduce a wearable biometric sensing device to monitor the 

mind-muscle connection via physiological signals. Our study 

suggests that the system can detect the subjects’ mental effort 

obtained with the proposed device, with an average precision of 

81% across subjects at various maximum forces. Moreover, the 

proposed system can perform 67% RM and 85%RM to investigate 

muscle activation effectiveness in each session across subjects. The 

result is also valid to the hypertrophy training goal that adopting 

mental effort with lightweight lifting can activate more muscle 

contraction. 
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