
Abstract—The emergence of wearable devices has brought great 
simplicity and convenience to people's daily lives. However, due to 
the small form-factor, low-profile hardware interfaces, the input 
scheme for such wearable devices becomes a bottleneck and even 
sabotages their functionalities. The state-of-the-art interaction 
schemes, including voice input, inertial measurement unit (IMU) 
based input, or acoustic based input, all require a stable environ-
ment, which is critical for wearable device. To break this stalemate, 
we propose a stable QWERTY keyboard input for wearable de-
vices based on bone-conduction models.  Using the characteristics 
of human anatomy, we achieve a low-cost and high precision text 
input system, named Osteoacusis input (Oinput), with the help of 
human bones. To be specific, we first investigate a new set of bone-
conduction theories. Through this set of theories, we combine a 
strong anti-noise cyclic neural network to achieve a high-precision 
QWERTY keyboard recognition for text input. Furthermore, in 
order to improve the user experience, we leverage slightly key-
board layout changing, dimensionality and feature selection to 
reduce the power consumption while preserving the convenience 
and stability. We have conducted experiments on 30 volunteers. 
The results show that Oinput has superior robustness with a high 
recognition accuracy of 93.3% in average. Moreover, Oinput's cal-
ibration mechanism increases the accuracy by more than 99%.

I. INTRODUCTION

ecently years, smart devices have boosted and played an 
nontrivial role in facilitating our daily lives. Intelligent de-

vices are designed to be smaller and smaller to make them more 
portable, such as smart watches, glasses, bracelets and so on.
The small form-factor, low-profile hardware interfaces in these 
portable smart devices make the user interaction experience ex-
tremely poor, and even sabotages their functionalities.

As the screen is too small to complete the text input in wear-
able devices, voice input has received a lot of popularity.
Unfortunately, voice input highly depends on the user's accent, 
speech rate, and the network environment. As long as one of 
these three conditions is not met, the input accuracy is highly 
degraded. Besides, voice input is fragile to external noise and 
lack of privacy protection. 

To fight against environmental noise and improve the inter-
action efficiency, acoustic based approaches emerged, such as 
FingerIO[1] and LLAP[2], which leveraged ultrasound to inter-
act with smart devices by tracking user's fingers. Similarly, 
WristWhirl [3] and WatchWriter [4] harnessed in-built sensors, 
such as piezoelectric sensors, distance sensors, etc., to identify 

the user's gestures. However, gesture input is slow, and some-
times troublesome when the environment is not stable.

A decent input system should satisfy the following three char-
acteristics, stability, efficiency, and low cost. Stability means 
that the system is not easily affected by other external variables, 
such as environmental noise, scene changes or environmental 
factors.  While Efficiency means that the system does not need 
complicated operations, such as extra training or tedious set-
tings. Finally, the system should be low cost and easy to carry.

In this paper, we find that human organs have very strong 
anti-noise ability, and they maintain a state of dynamic balance 
throughout the year. Therefore, if we can rely on bones as a 
media for the typing system, the typing system satisfies the sta-
bility. In order to make the device low cost, we use a small 
piezoelectric ceramic vibration sensor with a coin-size. Finally, 
we design a QWERTY keyboard for an efficient input.

The idea is straightforward, yet there remain several 
challenges for implementation. First, what kind of features do 
we need to achieve a precise recognition.  Second, as we only 
have ten fingers, and the number of buttons on a QWERTY 
keyboard are far beyond, how to realize a QWERTY keyboard
with only ten fingers. Finally, due to the limited computational 
resources and battery life, how to design a practical input 
system with minimum energy consumption?

To overcome the above challenges, we propose an osteoacu-
sis based QWERTY keyboard, namely Oinput, as shown in 
Figure 1. It harnesses only two coin-sized vibration sensor 
patches to help users realize a QWERTY -like keyboard on any 
plane. The vibration sensor on the wrists are used to collect the 
vibration signal generated by fingers tapping. Though 
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anatomical features, we analyze the vibration characteristics at 
different keystroke positions. We adopt a neural network with 
a very small amount of vibration signals for training (only about 
5-10 training samples per button position) in less than 2 seconds. 
A user only needs to input according to the layout of the 
QWERTY keyboard, and the system completes the recognition 
of the input content. We have conducted extensive experiments 
on 30 volunteers. The input accuracy is as high as 93.3% in av-
erage.

The rest part of the paper is as follows. Section II introduces 
some background knowledge and the related work in this field.
Section III describes the system architecture overview. Section 
IV introduces the detailed design of each module. In Section V, 
we evaluate the performance of the system through extensive 
experiments. Finally, we summarize the paper in Section VI.

II. RELATED WORK & MOTIVATION

A. Related Work
Today, portable devices only use voice input as a means of 

text input [15]. However, there are many problems with voice 
input, which we have discussed in the previous section. Mainly 
because it has higher requirements for users and networks. In 
addition, the voice input cannot be used when the outside sound 
is too loud or too small. If the external environment is too loud, 
the system cannot distinguish what the user says from the noise. 
When the outside voice is too whisper, such as in a library, it 
will bring a lot of embarrassment, and the use of it in public will 
also expose your privacy.

In order to get rid of the troubles caused by voice input, people 
try to use other ways to achieve input. FingerIO[1] and LLAP[2] 
use ultrasound that is inaudible to the human ear as a carrier. 
Use geometric methods to achieve precise positioning and 
tracking of the fingertips at the millimeter level. And through 
the depiction of a human finger trajectory, reaching recognition 
input. WristWhirl[3] and WatchWriter[4] complete the input by 
adding sensors such as piezoelectric sensors and distance sen-
sors to the device to recognize the gesture of the user's palm.
This method is very convenient to use for irregular interaction 
with the device. However, if it is used as input, it will give the 
user a very bad experience. Although the recognition of the 
handwriting input method has been completed as early as the 

last century, the use of handwriting for text input is very tiring 
and the efficiency is quite low.

TypingRing [11] designed a sensor similar to the ring. This 
ring carries the Inertial Measurement Unit (IMU). The user 
brings this ring to the middle finger. When the user needs to 
input, he only needs to control the middle finger, and select an 
area in the QWERTY keyboard that is divided into several areas 
(all composed of three buttons). Then tap one of the three fin-
gers (index, middle, and ring finger) to select the three buttons 
in the area. This method of selecting regions is very time con-
suming, so it is difficult to complete fast input.

Wang [5] and Liu [6] used the method of keystroke position-
ing to identify the location of the keyboard. They all take 
advantage of some of the characteristics of sound signals, such 
as multipath overlays and Mel Frequency Cepstrum Coefficient 
(MFCC). However, when the objects of the environment (such 
as people) are constantly moving, the superposition of the 
sound multipath is constantly changing, so the recognition at 
this time becomes very difficult. Like voice input, MFCC is 
vulnerable to environmental interference and cannot be recog-
nized properly.

MagBoard [13] uses the phone's magnetic sensor to identify 
the keyboard of its own design. This method can be used to de-
sign the keyboard according to your needs. However, when 
inputting, it is necessary to rely on magnetic things to stay on 
the keyboard of your own design, in order to be able to select 
the content to be input. If the dwell time is designed to be too 
short, the user needs to be hesitant to make a quick input, oth-
erwise it is prone to false positives, resulting in poor user 
experience. Therefore, the input speed of this system is severely 
limited. At the same time, it is also very troublesome to carry 
magnetic equipment with you. The portable wearable smart de-
vice itself is very small, so the battery is very limited, however, 
the use of cameras [7] is very energy intensive.

Both Skinput[9] and ViType[10] are signals obtained by vi-
bration sensors. Both systems need to tap some fixed places to 
complete the recognition of the input content by classifying the 
vibration signals. However, Skinput requires 10 sensors on an 
wristband to collect signals at very high sample rates (for ex-
ample, 55 kHz). ViType [10] is even better, it uses a lower 
frequency (for example, 600Hz) to complete the identification 
of the opponent's back numeric keypad. Unfortunately, ViType 
requires the user to mark the 9 points of the numeric keypad on 
the hand, which is very unattractive. If the user do not want to 
mark a point on your hand, ViType requires the user to tap doz-
ens of times around all possible points around each point. The 
user only places the center position of the 9 buttons and the 
eight directions around the center point (up, down, left, right, 
top left, top right, bottom right, and sit down). Tap 30 times for 
training, then the 9 keys need to be tapped 30*9*9=2430 times. 
Not only is the training set very large, but the entry into the 
training set is also very cumbersome.

Therefore, our system needs to meet three characteristics: sta-
bility, efficiency, and low cost. First of all, we want to design a 
system that does not need to carry overly complex equipment 
and does not require annoying preparation before use to achieve 
convenience. Second, we need the system to have a certain sta-
bility, and the recognition accuracy will not be greatly reduced 

Fig. 2. Multipath effect in bone.
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due to the noise of the environment, the movement of environ-
mental objects or the transformation of the scene. Last but not 
least, we need the system to have low cost. Low cost refers not 
only to the cost of equipment, but also to the cost of power con-
sumed by electricity, the time cost of typing, and the 
incalculable cost of loss due to privacy breaches.

B. Motivation 
We have found through experiments that when people tap the 

keyboard, their fingers will generate vibration signals. The 
propagation of stress waves generated by free vibration in solids 
is relatively stable. In addition, the vibration sensor that detects 
the stress wave in the solid is a sensor with a lower price and a 
smaller volume in the sensor. What’s more, it is convenient to 
use and the cost is low. Therefore, if the system can take ad-
vantage of the stress waves generated by the free vibration of 
the bone, the system will be able to meet convenience, effi-
ciency and low cost.

Free vibration: Free vibration means that when an object is 
subjected to a force, if the force energy is strong enough, the 
surface of the object will be deformed. Deformation causes the 
object to vibrate freely. When the object is free to vibrate, its 
displacement changes sinusoidally with time, also known as 
hwristonic vibration. The amplitude and initial phase of the 
hwristonic vibration are related to the initial conditions. In other 
words, the ultimate vibration of the deformed object is related 
to the intrinsic properties of the object [20] (e.g., density, mass, 
and size). The frequency of this vibration is called the natural 
frequency of the object. For the n-order natural frequency, it can 
be expressed as

2 2(1 )n n
Ef ck W                     (1)

Where c is a constant term, nk is related to the constraint of 
the object at the nth order, is the density of the object, W is 
the thickness of the object, E is the elastic modulus, and ζ is the 
damping ratio. However, the wave equation generated by the 
propagation of vibration is expressed as

2

2 2 2

( ) 1 ( )R R
r c t

                         (2)

indicates that the point source from the sound source in 
the spherical wave surface range is the sound pressure at the r
position, and R is the spherical distance from the point source 
of the spherical wave. C is the wave velocity, and the wave ve-
locity is related to the elastic modulus and density of the 

medium, which can be expressed as
Ec . When the me-

dium is a non-solid medium, E is the variable elastic modulus. 
When the medium is a solid medium, E is the shear elastic mod-
ulus or Young's modulus of the medium. Waves will form 
attenuation during the propagation process, and the attenuation 
coefficient can be expressed as

2
2

2 2

1( 1)
2c

                           (3)

Where is the circular frequency and is the relaxation 
time of the medium.

Propagation model in the human body: It is well known that 
in order to maintain the normal activities of life, mammals need 
the internal mechanisms of the body to create a stable environ-
ment for the cells. Such as acid-base balance, temperature and 
so on. We have found that the human body does have very 
strong anti-noise organs, such as bones. Since the bone density 
in the bone is always very stable, the natural frequency of the 
bone is generally constant according to the nature of the object's 
natural frequency [16, 17]. Therefore, we will build the system 
on the free vibration model of the bone. After research [16-19], 
the natural frequency of bones is around 200Hz. According to 
Shannon's law, the sampling rate needs to be at least twice the 
bandwidth. Therefore, we predict that the system sampling rate 
is around 400Hz, which is the lowest cost.

Since bones have such excellent characteristics, where can 
bones achieve normal input? We found that the hand bone is a 
good choice. Since different phalanx lengths are different, 

Fig. 3. Architecture of Oinput.
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different vibration signals can be generated. We found that vi-
bration signals are reflected when the vibration signal 
propagates from the phalanx to the bones such as the scaphotra-
peziotrapezoid at the bottom of the hand bone. These reflected 
vibration signals enter the metacarpal bone, creating a second-
ary reflection at the junction of the metacarpal and phalanx. 
Since the length of the metacarpal bone is also different, the 
time for all secondary reflected waves to reach the bottom of 
the palm is different, which results in a superposition of multi-
path signals. The vibration signals generated at different 
fingertips have different reflection angles at the bottom of the 
hand bone, so the final superimposed signals are also different. 
Using this principle, when using different fingers for tapping, 
the vibration signals collected by the sensor are different, as 
shown in Figure 2. In behavior, many unconscious movements 
are derived from muscle memory. That is to say, when using 
muscle memory, the same movement of people is almost ex-
actly the same. Moreover, the relative position of the keyboard 
is fixed, so the shape of the finger joints is very similar when 
people tap the same button position on the keyboard. When the 
finger taps on different position of the keyboard, a vibration sig-
nal with a completely different propagation path can be 
generated. Method of maximum likelihood estimation [8],
when the same button is tapped, the phenomena we can see is 
that a very similar vibration signal is generated.

III. SYSTEM OVERVIEW

A. Design Goals and Challeges
In order to reduce the inconvenience caused by using too 

many sensors, we decided to use a piezoelectric ceramic vibra-
tion sensor to capture the vibration signal generated from the 
finger is tapped. Therefore, we placed a sensor on each of the 
two wrists to capture the vibration signal generated when the 
finger tapped the different button positions. However, the idea 
of implementing Oinput is difficult and needs to overcome the 
following challenges.

In theory, the vibration signals at the same button position 
are the same, but in practice, even the signals at the same 
buttons are not exactly the same. When the user taps the 
desktop, it does not deliberately ensure that the strength of 
the tap is constant. The similarity is also very high when a
finger is striking two adjacent button positions on the 
same line. Therefore, it is extremely challenging for 

precise keystroke recognition on a QWERTY keyboard 
layout.
If we use complex algorithms and very high sampling 
rates, we can improve the recognition accuracy. However, 
due to the limited power of wearable devices, we need to 
strike a balance between the identification accuracy and 
energy consumption.
To ensure that an input device works, it is important to be 
able to correctly identify what is being entered. However, 
if the system needs to spend a long time in identification,
it will also make the user experience worse. Therefore, it 
is very important to be able to give users results efficiently.

B. Oinput System Overview
The system design of Oinput is shown in Figure 3. The Oin-

put system includes a piezoelectric ceramic vibration sensor. 
This device is capable of detecting very small vibration signals. 
Before amplifying the signal, we must use a notch filter to elim-
inate the electrical noise and prevent the effects of the gain. The 
noise-canceling signal is then amplified by an analog amplifier. 
Finally, these signal vibration signals are converted into digital 
signals by an analog to digital converter and sent to the host.

After receiving the data from the sensor, the receiving device 
processes and classifies the data and predicts the key content of 
the tap. Therefore, Oinput's software architecture is mainly di-
vided into three parts, (1) Data preprocessing. (2) Key content 
recognition.

Data preprocessing: The notch and bandpass filters are 
first used to filter out ambient noise and then the signal is 
cut by a dual threshold mechanism.
Identification of the key content: Then, the system uses 
the algorithm to normalize the preprocessed signal, and 
the signal is in the same dimension, which can remove 
the difference of the signals generated by tapping the 
same key with different strengths to some extent. The 
next step is to reduce the dimensions. In this way, the 
amount of data that the system needs to process is re-
duced to improve the efficiency of the system. Not only 
that, but we also use feature screening to further reduce
the amount of data in the system and improve the accu-
racy of recognition. After completing these two steps, the 
system enters the filtered features into the trained Recur-
rent Neural Network (RNN). The use of a cyclic neural 
network to share features in the temporal structure can 
solve the problem of vector limitation caused by the use 
of a Artificial Neural Network (ANN), thereby improv-
ing accuracy. The Long Short Term Memory (LSTM) 
algorithm is then used to solve the inefficiency caused by 
the gradient explosion. Finally, the network automati-
cally gives the most likely results based on the 
characteristics of the input.

IV. SYSTEM DESIGN

A. Oinput’s Keyboard
Oinput is a system that uses people's usual typing habits to 

identify keys. If you follow the typing habits, then each finger 
needs to map 4-8 keys, which is a very large workload. The 
more classifications that need to be made, the higher the accu-
racy of the data required. This may require an increase in the 

Fig. 4. Oinput's unique keyboard, when detecting user input left and right, is 
considered to switch to digital input method.
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user's training sample data, or an increase in the sampling rate 
to be achieved. In order to make the device as energy-efficient 
as possible and do not want to increase the training burden on 
the user, we hope to start from other aspects. Through observa-
tion, we found that there are actually many buttons in the 
keyboard that people can't use when using portable smart de-
vices. So, we decided to modify the keyboard, as shown in 
Figure 4. We removed the unused buttons and left 26 letters, 
semicolons, commas and question marks. In this way, each fin-
ger only needs to correspond to 3 or 6 buttons, which greatly 
reduces the burden on the system. We also divide the space key 
responsible for the thumb into three functions: left, right and 
space, so that the user can find the correct output by right and 
left selection in case of system identification error. Oinput also 
enables the ability to switch keyboards. When the user enters 
'Left, Right, Right, Left', the system will switch to the numeric 
keypad. The numeric keypad has one finger for each button. If 
the user hits the same beat again with two thumbs, which is now 
‘5, 6, 6, 5’, it will switch back to the alphabetic keyboard.

B. Eliminate the Impact of Strength
Strength has always been one of the factors that influence 

recognition. ViType [10] requires users to distinguish between 
tap heavily and tap gently during training. Obviously, this is a 
very unwise way. The user is not a robot, and there are not only 
two options for tapping. Fortunately, we are using the inherent 
properties of bones. We found that even when we hit the power, 

the waveforms were still very similar. Therefore, we think of 
using the normalized method to put the signal into the same di-
mension, the expression is as follows,

max min min
min

max min

( ) ( )
( )

y y x x
y y

x x
              (5)

Where x and y correspond to the data before and after nor-
malization. The result is shown in Figure 5(a). At this time, we 
found that the similarity of the two signals is very high. Through 
experiments, we can also find that, as shown in Figure 5, differ-
ent buttons are different.

C. Dimensionality & Energy Consumption Reduction
As we mentioned earlier, the power of portable smart devices 

is limited. Therefore, we try to find ways to reduce the energy 
consumption of equipment. Because Oinput is divided into two 
steps, collecting data and predictions. In the input step, we can 
reduce the energy consumption by reducing the sampling rate. 
In the forecasting step, reducing the amount of calculation is the 
key to saving energy. After we achieved higher precision recog-
nition, Oinput found the best sampling rate through more 
experiments. As shown in Figure 6, we let 30 volunteers tap 
each button 30 times and randomly take 5 samples as the train-
ing set to calculate the average recognition rate of the test set at 
different sampling rates. We found that the slope decreased 
when it was at 400 Hz, and the accuracy improvement was not 
obvious as the sampling rate increased. Therefore, we think that 

Fig. 6. Each button is tapped 30 times, and 5 samples are randomly taken as 
the training set, and the average recognition rate at different frequencies.

(a)                                                                             (b)                                                                              (c)

Fig. 5. According to the input habit, tap: (a) two identical button positions (Key Q) on one plane, but use different strengths; (b) two different button positions 
(Key Q and Key S); (c) (using the index finger) two different button positions of the line (Key R and Key T); the generated vibration signal.

Fig. 7.  Thirty volunteers used Oinput to tap each of the 31 buttons 100 times. 
Each button randomly took 30 samples as the training set, and the average 

recognition rate of the test set.
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400Hz is a relatively energy-saving frequency, which corre-
sponds to the natural frequency of bones mentioned above.

Therefore, we focus our attention on reducing the amount of 
calculations. Oinput uses the multipath effect because the paths 
of the different buttons are very different, which makes the re-
flected signals different in arrival time. We observed through 
the observation that the signals of different buttons have their 
own characteristics, and the features will not coincide with the 
signals of other buttons in the continuous sampling points. With 
this feature, we can reduce the dimensionality of the signal. Af-
ter searching, we found that Haar Wavelet is a very good 
method. Haar Wavelet uses a very small amount of computation 
to divide the original signal into a trend sub-signal and a wobble 
sub-signal. The trend sub-signal can be expressed as follows,

2 1 2

2
m m

m
f f

a                                    (6)

Among them, mf is the sampling point of the original signal, 

and ma is the trend sub-signal. Therefore, by using the trend 
sub-signal, not only the contour of the signal is maintained, but 
also the entire signal sampling point is reduced by half to 
achieve dimensionality reduction.

D. Feature Selection
In the previous section we mentioned that the signal is com-

pletely different after being affected by the multipath effect. On 
this basis, we believe that all the data of a signal is not useful, 
and the poor correlation with the label is a kind of interference 
to the neural network model. Therefore, we have designed a 
method of feature screening. is the threshold, F is the feature, 
E is the mean, and the feature screening method can be ex-
pressed as follows.

21 ( )
0

mi f
mi

f E
T

else
                  (7)

1
0

n

mi
im

m

T F
F

F else
                       (8)

Using the feature screening method, you can remove useless 
signal features, eliminate interference, improve accuracy, and 
contribute to reducing energy consumption.

E. Neural Networks
In the process of selecting a neural network, we compared 

the ANN and the RNN separately. In the experiment, we found 
that the accuracy of the ANN recognition is very low if there 
are interference factors such as trains or subways. Our network 
uses LSTM (Long Short-term Memory). The LSTM network is 
a special kind of RNN that can learn long-term dependency in-
formation. The feedforward neural network has no persistent 
memory for sequence data, while LSTM can learn the long-
term dependence of time series data. Also, it uses the accumu-
lated form to calculate the state, which helps to solve the 
problem of gradient disappearance during training. So, it is of-
ten used for sequence data classification. In the LSTM network 
architecture, the network consists of five parts: the sequence in-
put layer, the LSTM layer, the fully connected layer, the 
softmax layer, and the classified output layer.

V. IMPLEMENTATION & EVALUATION

A. Experimental setup
We recruited 30 volunteers between the ages of 19 and 22 

(15 males and 15 females). These volunteers are able to com-
plete the input without looking at the keyboard. All experiments 
involving human subjects are in accordance with the relevant 
regulations of our school. The evaluation of the experiment was 
carried out in a traditional office environment with a paper key-
board on the desktop. The volunteer was instructed to tap the 
button in an orderly manner. Each set of experiments requires 
10 strokes for each of the 31 buttons, and a total of 310 strokes. 
After completing a set of experiments, rest for 2 minutes before 
proceeding to the next set of experiments. Both Skinput and 
ViType draw 9 numeric keypads on the back of the hand, re-
quiring volunteers to control the strength of the tap when they 
are in the user's two systems. During the experiment, if there is 
no special explanation, Skinput and ViType mark the position 
of the tap on the back of the hand. In the experiment, if the user 
is required to use Skinput or ViType to specify a word, such as 
the letter B, then the user is required to tap the number key 2 
twice, and the two taps can only be regarded as the result of one 
test. If there is no identification, it is required that the volunteers 
do not have a paper keyboard on the desktop when using Oinput,
and only tap on the desktop by typing habits. When using 
ViType, volunteers are required to maintain the strength of the 
tapping, erase the position of the button marked on the back of 
the hand, and simply tap on the back of the hand.

B. Oinput System Performance
First we check the accuracy of the recognition of the Oinput

system. It is mainly divided into three steps, first with a given 
sample size as the training set. The second step is to compare 
the number of samples with other systems to the training set, 
and compare the accuracy of the input letters to verify the prac-
ticability of the system. The third step is to use 1/3 of the sample 

Fig. 8. Thirty volunteers used the trained system to achieve an average 
recognition accuracy of 100 single-letter inputs.
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number as the training set, and compare the accuracy of input-
ting the specified letters to verify the superiority of the system.

We asked 30 volunteers to use Oinput on a desktop with a 
paper keyboard. Volunteers tapped each of the 31 buttons 
on the paper keyboard 100 times according to their usual 
input habits. The system randomly takes 30 samples for 
each button as a training set. Surprisingly, as shown in Fig-
ure 7, the average recognition rate of the test set exceeds 
99%, and the highest recognition rate reaches 100%.
We take the same training method as the first step for other 
systems. Each button randomly takes 30 samples as a 
training set. After comparison, as shown in Figure 8, we 
are more prominent in the practicality of the input. We be-
lieve that the main reason is that ViType is difficult to 
operate, even if the position is marked on the back of the 
hand, there will still be a slip when tapping. Also, ViType 
needs to be tapped three times when entering ‘C’, which 
gives a greater chance of misjudgment.
Because it takes Oinput to train 31 buttons, ViType only 
needs to train 9 in the case of marking. Therefore, under 
the premise of the same user experience, we need to re-
duce the number of training sets of Oinput to 1/3, that is, 
10 training sets. Compare the recognition accuracy of our 
system with other systems. We found that, as shown in 

Figure 9, our accuracy is still much higher than the two 
systems, the highest is 100%, and the average recognition 
accuracy is 93.3%. The comparison shows that Oinput is 
superior in performance.

C. Convenience of the Oinput system
In the convenience experiment, we assume that the system is 

in the initial situation, such as the user just bought, need to enter 
the training set into the system. If the system needs to enter the 
training sample for a particularly long time, then the user will 
feel very troublesome and the product experience will be worse. 
We try to measure the time it takes to complete the entry of the 
training set, according to the instructions of the two systems. 

Oinput requires the user to tap 10 times for each button. 
However, the ViType system requires the user to train at 
four positions (up, down, left, and right) around the center 
point of the nine buttons, and that it is also required to tap 
at each different force. You need to enter 30 samples each 
time. For convenience, we allow volunteers to strictly con-
trol the intensity of their own taps, and only 10 samples 
per point. As shown in Figure 11, Oinput hits 310 times, 
which takes about 60 seconds. ViType needs to tap 450 
times, which takes about 85-100 seconds, which is about 
1.5 times that of Oinput.

D. Robustness of the Oinput system
The last step is to verify the robustness of the system, such 

as whether it will be affected in a noisy environment, whether 
it can work properly on different planes, and how much training 
set is required for the general input to be completed.

(1) We found that the bar is a very good experimental venue. 
The bar is very noisy, this is exactly what we want. At the same 
time, the bar has a glass table, a marble bar, a metal end plate, 
a plastic table, wooden finishes and limestone walls. Therefore, 
we are testing in a noisy environment whether different planes 
will affect the accuracy of the recognition. As shown in Figure
10, we tapped the specified button 100 times, and the recogni-
tion accuracy of different materials is greater than 90%.

(2) We know from the previous experiment, as shown in Fig-
ure 12, if ViType is to achieve accurate input without marking, 
it requires a large training set as a support. So it can be seen that 
when Oinput utilizes less than 20 training sets, it can already 

Fig. 9. Fifteen volunteers asked to tap the specified 100 buttons to calculate 
the average accuracy.

Fig. 11. The time spent by volunteers in completing the training sample col-
lection in the initial scene of the system.

Fig. 10. The average precision achieved on the plane of different materials hit-
ting the specified 100 buttons on the trained system.
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achieve more than 90% accuracy.

VI. CONCLUSION

Oinput is a novel text input system that attempts to discard 
physical keyboards. Oinput uses a small, inexpensive vibration 
sensor that can be embedded in a watch and a low-energy 
method to achieve high-precision recognition. Regardless of 
whether there is a paper keyboard on the desktop, the user only 
needs to tap the layout of the QWERTY keyboard, and Oinput
can recognize the user's input. Oinput maintains user-friendli-
ness while achieving strong robustness. Regardless of whether 
the user is at different strengths or in different locations, Oinput
can accurately identify the input content for the user. What's 
more, Oinput's adaptive function can maintain high accuracy in 
the environment or the user's habits change over time.
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