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Abstract

Individualized head-related transfer functions (HRTFs)
play an important role in accurate localization perception. How-
ever, it is a great challenge to efficiently measure continuous
HRTFs for each person in full space. In this paper, we
propose a parameter-transfer learning method termed PTL to
obtain individualized HRTFs based on a small set of HRTF
measurements. The key idea behind PTL is to transfer a HRTF
generation model from other database to a target individual.
To this end, PTL first pretrains a deep neural network (DNN)-
based universal model on a large database of HRTFs with the
assist of domain knowledge. Domain knowledge is used to
generate the input features derived from the solution to sound
wave propagation equation at the physical level, and to design
the loss function based on the knowledge of objective evaluation
criterion. Then, the universal model is transferred to a target
individual by adapting the parameters of a hidden layer of DNN
with a small set of HRTF measurements. The adaptation layer
is determined by experimental verification. We also conduct the
objective and subjective experiments, and the results show that
the proposed method outperforms the state-of-the-arts methods
in terms of LSD and localization accuracy.

Index Terms: head-related transfer functions, individualiza-
tion, spatial hearing, transfer learning

1. Introduction

Currently, augmented reality (AR) and virtual reality (VR)
technologies are becoming increasingly popular in our lives.
Spatial hearing plays an important role not only in VR/AR to
further improve the naturalness of the vision scene but also in
other applications such as navigation for the blind [1], cochlear
implants[2] and entertainment, eg., music and movie.

To generate more precise localization perception, the
single-channel sound is required to pass through two filters that
contain all the localization-related information of two ears, i.e.,
head-related transfer functions (HRTFs). HRTFs describe the
propagation response of sound waves from the sound source to
ear drums in the form of refraction, reflection and diffraction
in free space, which is highly related to the anthropometric
features of a human, such as head width, cavum concha
height, and pinna height [3]. As each subject has different
anthropometric data, HRTFs are highly individual-dependent.
It has been shown that the use of non-individualized HRTFs is
prone to cause up-down inversion, front-back confusion, and
in-head localization [4]. Therefore, individualized HRTFs are
essential for accurate localization perception in spatial hearing.

The most accurate method for HRTF acquisition is to
directly measure the impulse responses from the sound source
to the human ears over the full space [5]. However, it is
greatly time consuming, expensive, and non-scalable. In light

Copyright © 2019 ISCA

.cn,

3865

wanglu@szu.edu.cn

of this, several theoretical or numerical models have been
proposed to approximate the complicated human anatomy, such
as spherical head model [6], snowman model [7], structural
models [8], boundary element method [9], finite-difference
time-domain method [10]. However, they all require expensive
acquisition hardware and are computationally intensive. Many
methods have been proposed for a better balance between the
performance and the computation complexity, such as using
a representation of anthropometric features to individualize
HRTFs [11], building a direct correlation between anthropome-
tries and HRTFs using an artificial neural network[12]. Besides,
there is another promising method, which simplifies the HRTF
acquisition process by reducing the required number of HRTF
measurements and interpolating over the full space. In [13],
a spatial principal component analysis model was proposed to
evaluate individual weights from a small set of measured data.
As a result, HRTF magnitudes at 493 source directions can
be recovered from 73 measured source directions with about
19 dB of average signal-to distortion ratio in the recovery.
In [14], based on generic HRTFs, an optimal minimum mean-
square error solution was obtained by minimizing the spatial
aliasing error in the spherical harmonics (SH) representation of
the HRTFs, and incorporating statistics calculated from sparse
HRTF measurements. The experiments showed that using
25 individual HRTF measurements and generic HRTFs as a
reference, the estimation error of less than -6dB up to 12kHz
was achieved. However, it was shown in [15] that aliasing
cancelation in [14] may affect some of the artifacts.

To generate a more accurate HRTF individualization model
and reduce the number of HRTF measurements, we propose
a Parameter-Transfer Learning method termed PTL. The key
idea behind PTL is to transfer a HRTF generation model from
a person to a target individual based on a small set of HRTF
measurements. To this end, PTL first pretrains an universal
generation model on a large database of HRTFs with the assist
of domain knowledge. Then, the model is transferred to
the target by adapting the parameters of the universal model
using a small set of HRTF measurements. PTL-based model
is inherently nonlinear, which has potential to acquire more
information from an individual. As a result, less measurements
lead to the same performance as those linear models.

2. Proposed Parameter-Transfer
Learning-Based Individualization Model

2.1. System architecture

In this paper, we propose a parameter-transfer learning method
termed PTL to obtain a more accurate HRTF individualization
model, and reduce the number of HRTF measurements. The
main idea behind the system is to first train an universal model
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Figure 1: The system architecture.

from other subjects and fine-tune parameters of the model on a
small set of HRTF measurements. Therefore, the model trained
from others is transferred to a target individual.

The overall system architecture is shown in Fig. 1. The
process of PTL can be divided into three key components:
feature generation, universal model training and model adap-
tation. First, input features are generated by utilizing domain
knowledge derived from the solution to sound wave propagation
equation at the physical level, which depends on the position in
three-dimensional space. Then, a deep neural network-based
universal generation model is trained on a large database of
HRTFs to make a mapping between the features and the HRTFs,
where the loss function for model training is designed based
on the knowledge of objective evaluation criterion, i.e., log-
spectral distortion (LSD). To transfer the universal generation
model to an individual, we utilize a model adaptation method
to adjust the parameters of a hidden layer by using a small set
of individual HRTF measurements. As a consequence, a HRTF
individualization model is achieved and individualized HRTFs
over full space will be constructed based on this model.

2.2. Feature generation

HRTFs can be characterized by the wave equation from the
source to the ear canal. The source field can be represented
by a specific set of orthogonal series, such as SH basis,
spherical Fourier-Bessel (SFB) basis [16], which consists of
spherical harmonics and spherical Bessel functions to represent
the angular part and the radial part of HRTFs, respectively.
Motivated by this domain knowledge, we generate the input
features of the model based on SFB transform [17].

The angular part of SFB basis in our method exploits a real
version of spherical harmonics by considering the property of
the log-magnitude. Real spherical harmonics is a function of
elevation ¢ and azimuth €, and can be expressed as [18] [19]

2n+1 (n — |m|)!
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The corresponding radial part on a solid sphere of radius
r uses normalized spherical Bessel function, which is defined
as [20]
1

Tnljl (knir),

where j;(z) is the spherical Bessel function of order ! and
ji(x) = \/m/2xJi11/2(x) with Jy (x) the Bessel function
of order I'. Under the zero-value boundary condition, k,; =
Tp/a and Np = a1 (7in)/2. @in is the nth positive
solution to j;(x) = 0 in an ascent order, and ¢ is the maximum
radius.

Finally, for each position d = (r, 8, ¢), the set of the input
features is generated by concatenating the angular part and the
radial part as F(d) = [Y;"(0,¢), Pni(r)] withn = 0,...N,
m| < n,and ! = 1, ..., L, which contains a total number of
N; = [(N + 1)? + N L] parameters.

As for the output label of the model, since human is not
sensitive to the fine details of the phase spectrum of HRTFs
in localization [21] and discrimination perception [22], the
minimum phase HRTFs and interaural time delay can well
approximate HRTFs [23] [24]. Moreover, considering that the
phase part of the min-phase HRTFs can be obtained by Hilbert
transform, we exploit the logarithmic magnitude of the min-
phase HRTFs as the label.

Q(r) = 3

2.3. Universal model training

Before the model is trained, the preprocessing is required
to make the same variance for the training samples. For
each position in HRTF database, a pair of training samples
consists of input features and the corresponding HRTFs. For
the input features, the preprocessing process is to normalize
each dimension by the mean subtraction and then the standard
variance division, which is calculated for the j-th feature f5(j)
at the s-th position as

F() = 120 —rrlG)
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where 117 (j) and o¢(j) denote the mean and standard variance
of j-th item of the features for all the S training positions.

For the corresponding HRTFs at the s-th position, the
normalization is operated on each frequency bin, and is
calculated as

7oy — Hs(i) = pn(i)
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where pp, (i) and op,(7) denote the mean and standard variance
of HRTFs on S training positions for the i-th frequency bin,
respectively. Ny is the number of the frequency bins.

After the preprocessing, pairs of features are fed into a
DNN to train a model. The loss function is used for measuring
the accuracy of the model. In order to design it properly,
the knowledge of subjective perception should be considered.
Since log-magnitude spectra preserves all of the perceptually-
relevant information which is contained in a measured HRTF
for a position [21], we design loss function derived from
log-spectral distortion (LSD) which represents the difference
between HRTFs on a logarithmic basis from human hearing,
and has been widely used for objective evaluation of HRTFs
models [25][26][27]. LSD expresses the distortion between the
estimated and the measured HRTFs. Based on LSD, we define
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Figure 2: The model adaptation structure. The white and black
circles denote the nodes from the input layer and the output
layer; respectively. The gray circles mean fixed network nodes
during model adaptation, while the stripped circles mean that
the parameters are fine-tuned on a small set of individual HRTF
measurements. We respectively choose (a) the first hidden layer
(termed PTL-F), (b) the middle hidden layer (termed PTL-M.)
and (c) the last hidden layer as the adaptation layer (termed
PTL-L), while keeping the parameter of other layers fixed

a weighted mean square loss function, and is expressed as
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where Ny is the number of the frequency bins from k; to
ks, H, (¢) denotes the estimated normalized HRTF for the
i-th frequency bin on the s-th position. It is seen that we
choose the standard variance as the weights for frequency
bins to compensate the influence of preprocessing of HRTFs.
By setting the loss function related to LSD, the model can
maximize the objective performance by minimizing the loss
function L.

2.4. Model adaptation

An important problem for PTL is to transfer the universal
model to an individual. However, it is a great challenge for
DNNs because a network often contains a large number of
parameters, and we could not tune all the parameters in a
deep network without enough data. A possible solution is to
adapt the parameters of a specific layer based on sparse HRTF
measurement, keeping the rest layers of the network unchanged.
However, no conclusive study suggests on where exactly in the
network this transformation should be implemented. In this
paper, we choose the layer which provides the best empirical
results.

As shown in Fig. 2, we respectively test three hidden layers
as the adaptation layer while keeping the other nodes fixed,
where the adaptation layer is (a) the first hidden layer (PTL-
F), (b) the middle hidden layer (PTL-M), and (c) the last hidden
layer (PTL-L). By analyzing the localization errors, we choose a
proper layer as the adaptation layer. Then, with the loss function
in Eq.( 6), the nodes at the adaptation layer are fine-tuned, and
the network parameters are adapted to an individual based on its
sparse HRTF measurements. Finally, we can synthesize HRTFs
for a target subject over full space by generating features and
then putting them forward to the PTL-trained model.

3. Performance Evaluation

In this section, we conduct experiments to evaluate the system
performance. Two databases, PKU&IOA [28] and CIPIC [29],
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Table 1: Objective performance comparison of PTL-F, PTL-M,
PTL-L, DNN model without adaptation(w/o adapt.), [13] and
[14] in terms of LSD[dB] and RMSE.

Method #of HRTFs | LSD RMSE
[13] 60 5.62  0.083
[14] 60 575  0.091
DNN (w/o adapt.) - 7.19 0.11
PTL-F 60 548  0.082
PTL-M 60 551  0.081
PTL-L 60 495 0.072

are used for universal model training and model adaptation,
respectively. PKU&IOA database contains 793 locations for
each distance and a total of 6344 HRTFs over the eight
distances (20, 30, 40, 50, 75, 100, 130 and 160 cm) measured
from the KEMAR mannequin. Each head-related impulse
response (HRIR) has been windowed in about 15.625ms with
the sampling rate of 65.536kHz. CIPIC database [29] contains
HRIRs from the positions on 25 azimuths and 50 elevations at
a distance of 1 m for 35 subjects. The length of each HRIR is
approximately 4.5 ms with a sampling rate of 44.1 kHz.

First, the HRIRs for the two databases are resampled to
the same sampling frequency, i.e., 44.1kHz. Then, HRIRs
are converted to HRTFs using a 256-point FFT followed
by constant-Q filtering, and the min-phase HRTFs are then
obtained following by Hilbert transform. We evaluate the
frequency bands between 200 Hz and 20 kHz. Together with
ITD, there are 233 parameters for each direction, which are the
outputs of DNN. For input features, we set N = 10, L = 3
and a = 220cm, as N = 4 is enough to preserve localization
accuracy [24], and the inputs of DNN are computed by using
Eq.(2) and (3), leading to Ny = 130 features. For DNN,
we use the Relu activation function because of its nonlinearity
and good performance in other tasks for hidden layers, and
linear activation function for the output layer because of the
large fluctuation for HRTFs in different frequency bands. The
number of hidden layers is 3 with 512 nodes for each layer. The
dropout fraction is set to 0.5, and the sparsity target is 0.2.

3.1. Objective evaluation

In this section, we conduct experiments to evaluate the objective
performance of the proposed PTL method. LSD in frequency
domain, and root mean square error (RMSE) in time domain
are used as two metrics for objective evaluation, where RMSE
is defined as the difference between the estimated and the
measured HRIRs, which is expressed as

1
RMSE = | | ———
S \/NdNtNm

where A, ¢4 and fzmyt,d respectively denote the ground-truth
HRIR and the estimated HRIR at ¢-th time sampling point of
the d-th direction for subject m. m = 1,..., Np,, t = 1, ..., Ny,
d=1,...,Ng.

First, the influence of model adaptation on different layers
is considered by comparing DNN model without adaptation
with PTL-F, PTL-M and PTL-L under the same 60 HRTF
measurements. The goal is to investigate the adaptation of
the universal HRTF model trained on PKU&IOA to a target
individual in CIPIC. The results are provided in Table 1. It
is shown that PTL provides up to 2.24% relative improve-
ment compared to the unadapted model. Especially, PTL-L
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Figure 3: The effect of the number of HRTF measurements for
a target subject on the performance for PTL method.

achieves about 0.5dB LSD improvement over PTL-F and PTL-
M methods. It indicates that a parametric transformation at
the last hidden layer is most effective for adaptation of the
universal model to the characteristics of a new subject. It is
reasonable to perform the domain switch at the last hidden
layer, because the input features of the model is related to the
directions of measurements, and the output features are depend
on individuals. Therefore, domain information of HRTFs is
maximum in the last hidden layer of a HRTF generation model.

Furthermore, we also compare the performance of PTL
with other two individualization methods [13] and [14] with
the same number of HRTF measurements, as shown in Table 1.
It is noticed that PTL-L achieves a best performance with up to
0.8dB of LSD improvement. This improvement mainly lies in
two reasons. First, rather than a linear model in [13] and [14],
PTL builds an inherently nonlinear model and has potential to
make a more accurate mapping between localization features
and individual HRTFs. Second, DNN is tolerent to noise,
leading to a more robust PTL-based model .

Afterwards, we analyze the effect of the number of HRTFs
for a target subject on the adaptation performance in terms of
LSD, as shown in Fig. 3. The positions of HRTFs are randomly
chosen for each subject from the CIPIC database. It is seen
that the performance is better as the number of pre-measured
HRTFs increases. When the number of HRTF measurements
exceeds 60, LSD of PTL-L is reduced below 5dB.

3.2. Subjective evaluation

The subjective performance of the proposed PTL method is
evaluated in terms of the perception correct rate (CR) and the
front-back confusion rate (FBR) by comparing with generic
HRTFs in PKU&IOA. 5 subjects without any hearing problem
participated in experiments. Their small sets of HRTFs were
measured as follows. First, 20 positions were chosen on a
sphere at a distance of 1.2m from the head of a subject, and
15 of them were at the front and back because FBR is more
sensitive to the individual. Then, a burst of 1s chirp signal with
a bandwidth of 200Hz to 20kHz was generated and sent to each
subject for 3 times at each position. After the sound signal was
recorded at two ear canals, HRTFs could be calculated using
a FFT-based synchronization method [30]. Finally, 20 HRTFs
were obtained for each subject and used for mode adaptation.
Prior to the experiments, the subjects performed the procedural
training to reduce the influence of procedural factors on the
results by playing binaural signals from 5 different directions
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Figure 4: Subjective performance comparison in terms of CR
and FBR.

with feedback, while in the test phase, no feedback was given.
During the experiments, the subjects were allowed to repeatedly
listen to spatial audio files and then were required to record their
perceptive positions.

The perception results are illustrated in Fig. 4. It is
shown that the proposed PTL achieves a better perception
localization performance than the method using generic HRTFs.
Especially, PTL-L provides best performance, which achieves
6.24% improvement in CR and and 3.98% reduction in FBR
over generic HRTFs. The main reason is that the last hidden
layer contains more domain information and the front-back
localization correction is operated by measuring more front and
back data.

To efficiently choose the positions of sparse HRTF mea-
surements is a difficult task when we want to minimize the
number of HRTFs while keeping an accurate localization
perception. Our future work will focus on this problem, and
conduct a more detailed subjective listening test.

4. Conclusions

In this paper, we propose a parameter-transfer learning method
termed PTL to obtain accurate individualized HRTFs based on
a small set of HRTF measurements. The key idea behind PTL
is to transfer an HRTF generation model from other persons to
a target individual. To this end, PTL first pretrains a universal
neural network on a large database of HRTFs, and then transfers
it to an individual by adapting the parameters of a layer of the
neural network using a small set of HRTF measurements. The
target layer for model adaptation is determined by experimental
verification, and PTL-L method achieves best performance
because domain information is maximum in the LAST hidden
layer. Compared with other linear models, the experimental
results show that the proposed PTL method achieves a better
localization perception performance under the same HRTF
measurements. Therefore, instead of measuring HRTFs over the
full space for each subject, only few-shot samples of HRTFs are
sufficient to help to build an effective individualization model.
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