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ABSTRACT
Smart wristband has become a dominant device in the

wearable ecosystem, providing versatile functions such as
fitness tracking, mobile payment, and transport ticketing.
However, the small form-factor, low-profile hardware inter-
faces and computational resources limit their capabilities in
security checking. Many wristband devices have recently
witnessed alarming vulnerabilities, e.g., personal data leak-
age and payment fraud, due to the lack of authentication
and access control. To fill this gap, we propose a secure text
pin input system, namely Taprint, which extends a virtual
number pad on the back of a user’s hand. Taprint builds on
the key observation that the hand “landmarks”, especially
finger knuckles, bear unique vibration characteristics when
being tapped by the user herself. It thus uses the tapping
vibrometry as biometrics to authenticate the user, while dis-
tinguishing the tapping locations. Taprint reuses the inertial
measurement unit in the wristband, “overclocks” its sam-
pling rate to extrapolate fine-grained features, and further
refines the features to enhance the uniqueness and reliabil-
ity. Extensive experiments on 128 users demonstrate that
Taprint achieves a high accuracy (96%) of keystrokes recogni-
tion. It can authenticate users, even through a single-tap, at
extremely low error rate (2.4%), and under various practical
usage disturbances.
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1 INTRODUCTION
Recently, wearable devices have gained momentum and

witnessed a phenomenal growth in popularity. Gartner pre-
dicts that the revenue from wearable devices would exceed
the smartphone market, reaching 61.7 billion revenue by
2020 [47]. Smartwatches and smart wristbands represent the
dominant force in the wearable ecosystem, widely used as
fitness trackers or smartphone companions, and more re-
cently adopted in mobile payment, transportation ticketing,
etc. As such devices become increasingly personalized, they
carry a looming threat to impinge on users’ privacy and
security. One may question the necessity of securing these
low-profile devices, which commonly generate insensitive
fitness data. However, the raw sensor data has already been
used by wearable apps to infer private activities, healthiness,
etc., and many wearables can execute SMS messaging and
online payment functions [39,40]. To ensure security, the
wearable device itself must be able to authenticate the user
and enforce access control.
Traditional authentication methods often rely on heavy-

weight hardware and user interfaces, which do not fit wear-
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Figure 1: Taprint at a glance.
ables. For example, password keypads [1,2] often require
a touchscreen, and are vulnerable to shoulder surfing and
smudge attacks. Fingerprint[7] and face recognition[8] are
vulnerable to forgery attack, and require specialized hard-
ware which do not match wearables’ cost and form-factor
constraints. Certain behavioral activities such as hand ges-
ture [17] and gait patterns [11] may be used to identify a
user, but are still possible for adversaries to mimic.

In this paper, we propose Taprint, a lightweight wearable
input method which can authenticate the user while simul-
taneously offering a keypad interface. As shown in Figure
1, Taprint extends a virtual 12-key numeric keypad on the
12 knuckles of a hand. To authenticate herself, a user sim-
ply needs to use a finger on the other hand to tap one key.
This single tap suffices for authentication. In addition, the
user can input numbers or even characters, as long as she
has a typical smartphone keypad layout in mind (to map to
the knuckles). Knuckles are natural “landmarks” on hand,
requiring no projection or drawing.

The key premise behind Taprint is that the user’s tapping-
on-knuckle represents a consistent feature, which can be
sniffed by the wristband’s inertial measurement unit (IMU).
We investigate this property through a model, which takes
into account the hand biometry and finger tapping behav-
ior. We further show through extensive experiments that
the feature is unique and diverse across tapping positions.
More importantly, the tapping is unforgeable, i.e., adversaries
cannot reproduce the feature even if they know the authen-
tic user’s tapping position. Therefore, when the user types
on the virtual keypad, Taprint can essentially continuously
authenticate each of the user’s tapping input.
To make Taprint reliable and usable, we need to address

several key challenges. First, the IMUmay be affected by arm
motion and other ordinary activities, which corrupt the vibra-
tion feature from tapping. Second, unlike active vibrations
from modulated acoustic signals, tapping signals are pas-
sive and unmodulated, comprised of a variety of frequencies
which make the pattern matching much more challenging
[30]. Third, the hand biometry and tapping behavior may
vary even for the same user over time.

To cope with these challenges, we first denoise the vibra-
tion caused by user activities. Furthermore, we propose a

fine-grained feature extraction mechanism to enhance the
uniqueness of vibration features from different tapping posi-
tions, and maintain consistency of the vibration features at
the same position. We also design a density-based one-class
classifier, namely DenID, to distinguish different tapping
vibration by different users. Last but not the least, a calibra-
tion scheme including a real-time manual calibration and a
multi-threshold self-calibration is designed, thus enabling
adaptation to varying typing behaviors and real-time feature
update when error occurs.
We build Taprint as a prototype application for the An-

droid smartwatch. Our implementation achieves real-time
secure input without noticeable latency. To acquire IMU
readings with fine time resolution, we modify the OS ker-
nel of a commodity smartwatch and configure the sen-
sor registers to improve its sampling time by 5×. We fur-
ther implement two use cases: a one time validation app,
and a typing app. An demo video of Taprint is available at
https://youtu.be/4tfMuYc_AMo. To evaluate the performance
of Taprint, we have recruited 128 users and repeated multiple
validation experiments over one month. The results show
that Taprint can correctly identify a user with a low error
rate of 2.4%. It recognizes the 12 keys with a mean accu-
racy of 96%. We have also conducted an extensive evaluation
of Taprint’s robustness under various disturbances, such as
wearing position of wristband, tapping strengths, user states
and different environment (e.g., on the airplane). We have
further validated Taprint’s resilience against common at-
tacks (e.g., adversaries tapping on the authorized user’s hand
while she is sleeping).

The remainder of this paper is organized as follows. In
Section 2, we first briefly introduce the vibration model in
our case and presents the feasibility study of using vibration
profile to characterize users in Section 3. In Section 4, we pro-
vide the system overview of this work and define four threat
model. Then, Section 5 explains how Taprint detects the
vibration of a tap. We introduce the fine-grained vibration
recognition mechanism for user characterization in Section 6
and a calibration mechanism in Section 7. Section 8 explains
the implementation detail, followed by comprehensive ex-
perimental evaluations and user studies of our system. We
discuss the related work in section 9 and conclude the paper
in Section 10.

2 VIBRATION MODEL FOR ON-BODY
TAPPING

Typically, the mathematical model of complex vibration
systems such as human body is intractable. For the sake
of simplicity, we first construct a single degree-of-freedom
model as shown in Figure 2 to illustrate the basicmechanisms.
In this model, the mass element is represented by a rigid



Figure 2: The vibration model of a tap.
body with constant massm, the spring element is defined
as a spring with negligible mass and constant k , and the
damping element is represented by a damper with damping
coefficient c .

When an external force is applied to the rigid body, vertical
displacement occurs. According to the Newton’s second law
of motion, we have,

F (t)=ma(t) + kx(t) + cv(t), (1)
where F (t) is the external force, v(t) is the speed, x(t) is the
vertical displacement, c is the damping coefficient, k is the
spring constant andm is the mass. The relation in (1) can
further be explained as,

F (t)=m
d2x(t)

dt2
+ kx(t) + c

dx(t)

dt
. (2)

The vibration during a finger tapping operation can be
separated into two phases. In the first phase, the finger has
a transient contact to the rigid body within the duration
of seconds, which is considered to be a forced vibration
with constant force F (0). After the disturbance of the initial
transience, in the second phase, the contact between the
finger and the rigid body disappears, which leaves the system
to vibrate on its own and this is called free vibration. In the
forced vibration phase, after applying the Fourier transform
to both sides of (3), we have,

F (0)
jw

(1 − e−jw∆t )=−w2mX (w) + kX (w) + jwcX (w), (3)

that is,

X (w)=
1 − e−jw∆t

−
jm
F (0)w

3 − c
F (0)w

2 +
jk
F (0)w

, (4)

where X (w) is the spectrum of the vertical vibration signal
andw is the frequency. We then investigate the vibration in
the horizontal direction. During the horizontal propagation
of a vibration signal from the tapped location to the sensor,
the vibration suffers from attenuation, and the corresponding
model can be stated as follows,

y(t)=x(t)e−αd , (5)
wherey(t) is the vertical displacement at the position that the
vibration has propagated to, x(t) is the vertical displacement
at the finger tapped position, d is the propagation distance,
and α is the attenuation coefficient. Again, after applying

the Fourier transform to both sides of (6), we have,
Y (w)=X (w)e−αd . (6)

Note that α is related to the propagation medium. Wave
propagation in body is dispersive by nature, which implies
that different frequencies propagate with different attenua-
tion coefficients at different velocities. Roughly speaking, the
attenuation is small when the vibration signal propagates
through the hard bone, whereas the attenuation is large
through the soft tissue. Therefore, vibration waves gener-
ated at different positions on the hand back result in different
values of α and d , which make the vibration signals unique
at different positions. After putting (4) into (6), we obtain,

Y (w)=
(1 − e−jw∆t )e−αd

−
jm
F (0)w

3 − c
F (0)w

2 +
jk
F (0)w

. (7)

For the same location of the human body,m, c and k are
stable and belong to the same biometric feature. Moreover, as
part of the tapping habits of users, F (0) and ∆t have certain
stability. However, we know that the attackers can arbitrarily
adjust F (0) and ∆t . In (8), the numerator is an exponential
function of α and d , and the denominator is a polynomial
function of m

F (0) ,
c

F (0) and
k

F (0) .
Note that w is a vector rather than a scalar value. For

all the frequency points of w , unless the four parameters
( m
F (0) ,

c
F (0) ,

k
F (0) and ∆t ) of a tapping vibration signal in a

certain position are equal to the parameters of the vibration
signal in another position at the same time, the frequency
spectrum X (w) of the corresponding two positions cannot
be the same. Among them,m, c and k vary from person to
person [42]. Therefore, the tapping force of different people
at a fixed position can uniquely be identified, which can be
leveraged for authentication.

3 FEASIBILITY STUDY
In this section, we conduct experiments to validate the

insights from the foregoing analysis, particularly the unique-
ness of the tapping feature and its diversity among loca-
tions/users.

3.1 Uniqueness of Vibration Signals
In this experiment, we control the variables F (t), ∆t and

d , by using a motor to vibrate twice at the same position
on the left-hand back of two users, respectively, so as to
investigate the signal profile in the time domain. We plot
the vibration signals of motion reading in Figure 3(a) from
the Z-axis of the accelerometer in a commodity smartwatch.
We can observe that the vibration waveforms from the same
person are consistent and differ among the two users.
We then repeat the experiment, but substitute the motor

by users’ fingers. In Figure 3(b), we can observe that, for
the same user (S1), the profile of two tapping signals match
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Figure 3: The vibration profile of two subjects in the time and frequency domains, where (a) is generated by a
motor, and (b) and (c) are generated by a tapping force.
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Figure 4: The Euclidean distance of samples generated by different (a) fingers, (b) tap strengths, and (c) locations.
each other well in both time and frequency domains, which
indicates the consistency ofm, c and k of the same person.
In contrast, the profile of the two subjects differ significantly
(Figure 3(c)). This verifies the feasibility of using the values of
m, c and k to distinguish the legitimate user from attackers.

3.2 Vibration of Different Fingers
One natural question here is: does the distinction comes

from the hand back or the finger? To answer this question,
we asked 8 participants to tap on 14 knuckles of their left
hands for 30 times using the forefinger, the middle fingers
and the ring finger, respectively. In Figure 4(a), ‘F’ means
that we take the mean value of 20 samples generated by the
forefinger as the datum point. Similarly, ‘M’ and ‘R’ denote
the middle finger and the ring finger, respectively. We cal-
culate the average Euclidean distance between each datum
point and other samples. Overall, we have three observa-
tions: 1) the Euclidean distance of most authorized samples
is smaller than that of the unauthorized samples, 2) the Eu-
clidean distance of different fingers is about the same, and 3)
some of the authorized samples mix with the unauthorized
ones, which might be caused by the variation of the initial
tapping force. In conclusion, the distinct signals are generated
mainly by hand back associated with the values ofm, c and k
rather than a tapping finger itself.

3.3 Vibration of Different Strengths
We now intentionally use different tapping forces and

investigate the signal variation. We asked 8 participants to
tap on 12 knuckles of a hand for 30 times with both heavy
and gentle force. In Figure 4(b), ‘H’ means that we take the
mean value of 20 samples generated by heavy force as datum
point. Similarly, ‘G’ denotes the gentle force. We observe
that the authorized samples with different tapping force may
mix with the unauthorized ones. Therefore, the tapping force
is an interference factor that needs to be resolved. We will
design a calibration scheme to tackle this challenge (Section
7).

3.4 Vibration at Different Locations
In this experiment, we study the situation when the tap-

ping positions change. Specifically, we asked one participant
to tap on the 14 knuckles on the hand back each for 30
times. Then, we take the mean value of 20 samples collected
from position Pi as datum point and calculate the average
Euclidean distance between each datum point and other
samples. The result (Figure 4(c)) shows that the Euclidean
distance of samples on the same location is generally smaller
than that of the others except 4 outliers. We conjecture that
the instability of initial tapping force results in these outliers.
Nevertheless, it is evident that the value of y(t) is influenced
by the variation of distance from the tapped position to a sen-
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sor. Such diversity allows Taprint to distinguish the tapping
locations, thus creating a small pinpad.

4 OVERVIEW OF TAPRINT
4.1 System overview

Taprint consists of three major components, with the fol-
lowing functionalities.

(1) Tapping vibration detection. Taprint first uses the
energy-based threshold to segment the signals, and then the
General Cross Correlation (GCC)-based algorithm to align
the segments. Then, Taprint removes the noise caused by
body motion. Finally, the Z-score normalization is used to
reduce the variation of tapping force.

(2) Fine-grained vibration recognition. Taprint uses
fine-grained features to distinguish different tapping vibra-
tion on different knuckles of different users. We design two
kinds of weighted features for inputting numbers (text input
and password input), and inputting single-tap for authentica-
tion, respectively. Given these features, we further customize
the nearest neighbor method and a density-based one class
classifier to recognize the inputs.

(3) Update and calibration. The vibration features may
change due to user’s tapping habit and tapping position vari-
ation. Taprint thus incorporates a simple real-time manual
calibration and a multi-threshold self-calibration mechanism
to adapt to these changes.

Figure 5 describes the work-flow of Taprint. In the initial
training stage, a series of pre-processing is conducted that
includes segmentation, denoising, normalization and align-
ment. Afterwards, fine-grained features are extracted to build

the training vibration profile. When a new tapping vibration
is detected, the number input function (text input & pass-
word input) extracts features weighted by their relevance,
and then classifies them via the nearest neighbor classifier.
The single-tap authentication works in a similar way, except
that it uses different feature processing algorithms.

4.2 Threat Model
We consider the following attacks that may threaten the

proposed authentication functionalities.
Zero-effort Attack. The attacker attempts to find a po-

tential tapping location that can generate similar vibration
signals to bypass the authentication, by tapping randomly
without knowing either the PIN code or the location of the
single-tap lock.

Credential-aware Attack. The attacker obtains the le-
gitimate user’s credentials, including the PIN code and the
location of the single-tap lock. However, attacker does not
know the behaviors of the legitimate user such as tapping
force, tapping angle, gesture, contact duration.

ObserverAttack. The attacker possesses the prior knowl-
edge of legitimate user’s PIN code and the location of single-
tap lock, and tries to imitate the behavior of the legitimate
user based on stealthy observations via shoulder surfing or
camera recording.

Intimate Attack. The attacker, who may have an inti-
mate relationship with the legitimate user, acquires knowl-
edge of the legitimate user’s PIN code and the location of the
single-tap lock. The attacker attempts to pass the authenti-
cation by tapping on the legitimate user’s hand when she is
unaware of it (e.g., during sleeping).

5 DETECTION OF TAPPED VIBRATION
SIGNAL

5.1 Segmentation and Denoising
To detect whether a tapping occurs, Taprint uses an

energy-based approach, and segments the raw vibration sig-
nal into small windows. For each segment, the signal energy
is calculated and forwarded to the tapping detection module.
In terms of the cutoff point, we set it to 0.1 s after the start
point as the duration of a keystroke tapping signal is usually
around this value [41].

Human mobility such as walking often causes body vibra-
tion, which needs to be denoised. Based on the short time
Fourier analysis, we observe that the vibration caused by
human mobility is mostly less than 10 Hz, and hence a 20
Hz Butterworth high pass filter is sufficient to remove the
noise from the captured vibration signal. Through this filter,
the direct current component such as gravity can also be
removed.

In the login authentication process, the users need to turn
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on the touchscreen first. When a user types on a laptop key-
board or washes dishes, he/she may not turn on the touch-
screen of the smartwatch. However, in the text input process,
some actions when typing on the back of one’s hand (e.g.,
picking up objects or scratching hands) may trigger false
positives. Examples are shown in Figure 6, which plots the
vibration signals detected during 5 types of user activities.
Note that these vibration signals are all filtered by a 20 Hz
Butterworth high pass filter. In this figure, we observe that
the signal to noise ratio (SNR) of finger taps (even with slight
taps) are obviously higher than that with other actions. Thus,
we simply segment a tapping-induced vibration signal when
the signal SNR exceeds a certain threshold (default to 20 dB).

5.2 Normalization and Alignment
Afterwards, Taprint normalizes the magnitude of both

signals using the Z-score normalization technique, which
is standardized based on the mean and standard deviation
of the original data. The processed data conforms to the
standard normal distribution, i.e., the mean value is 0 and
the standard deviation is 1.
Once the tapping event is detected, Taprint can only

achieve a rough estimate of the starting point of the tap-
ping induced vibration signal. Consequently, Taprint aligns
signals by finding the time shift with the GCC algorithm
[46]. Note that Taprint does not utilize the Dynamic Time
Warping (DTW) algorithm since it removes the timing infor-
mation critical to the signal’s pitch and requires much more
intensive computation.

6 FINE-GRAINED VIBRATION
RECOGNITION

In this section, we describe how Taprint extracts fine-
grained features based on proposed position-sensitive points
and position-relevant points. The reason why we do not
adoptmore sophisticatedmachine learning algorithmswhich
may extract features automatically will be discussed in sec-
tion 6.2.

6.1 Extracting Weighted Features
Due to the dispersion of the vibration signal, the tapping

induced vibrations in different positions may have different
spectra. Accordingly, we choose the amplitude spectral den-
sity (ASD) [38] as the basic feature. For a given segment of

vibration signals, the ASD can be simply obtained through
FFT. However, different frequency bins may have different
contributions to the uniqueness of features (Figure 7). First,
if the vibration amplitude of some frequency points shows
notable differences at different tapping positions, these fre-
quency points can better distinguish the vibration position.
We refer to these frequency points as position-sensitive fre-
quency points. On the other hand, if the amplitude discrep-
ancies of certain frequency points at the same position are
small, these frequency points can better describe the char-
acteristics of this location. We refer to these frequencies as
position-relevant frequency points. By weighting the position-
sensitive frequency points or position-relevant frequency
points from other frequency points, the characteristics of
the vibration signal can be amplified. We refer the resulting
feature points as weighted features.
Keypad input. In the keypad input scenario which needs

to distinguish 12 tapping positions, the position-sensitive
frequency points and the position-relevant frequency points
jointly provide the feature information. We use the Fisher
score technique to identify position-sensitive frequency
points and position-relevant frequency points. The Fisher
Score is designed as the weight for features and is given by

Fr =

∑l
i=1 ni (ui − u)2∑l

i=1 niδ
2
i

, (8)

where r denotes the feature number of each dimension, ni
denotes the number of samples at the ith class, ui and δ 2i
denote the mean and variance of the samples at the ith class,
respectively. Moreover,u denotes the average of all classes as-
sociated with the dimension feature and l is the total number
of classes.

Single tap authentication. In the single-tap lock authen-
tication scenario, the system only needs to identify whether
the vibration is generated by a certain fixed position. Conse-
quently, the position-relevant frequency points exhibit better
characteristics. We can set a weight for each frequency point
according to the following relation

w =
max(E(Xi )) − E(Xi )∑
max(E(Xi )) − E(Xi )

, (9)

where E(.) is the variance.With this weight design, frequency
points with small variances represent positional correlations,
and hence are given larger weights. On the other hand, fre-
quency points with high variances are considered to be weak
descriptive features and are multiplied with smaller weights.
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Intuitively, raw vibration signals exhibit time-domain char-
acteristics of tapping operations at different locations. As
shown in Figure 3, the tapping of the original signal dif-
fers between two positions. Therefore, before applying the
weighted operation, we utilize the fusion features with ASD
of the raw vibration data.

6.2 Recognizing Tapping Position
Keypad input. After the extraction of fine-grained fea-

tures, Taprint runs a nearest-neighbor-based pattern match-
ing algorithm that compares the extracted features with
those in the training set. The training data with minimum
distance is declared as the current key position and displayed
on the user interface. In the simplest form, we use the Man-
hattan distance as the metric of comparison.

Note that Taprint cannot use sophisticated pattern recog-
nition methods, like neural network, or support vector ma-
chines. Because these algorithms require substantial training
operations to construct the classification model, and often in-
curs formidable computational cost which hampers real-time
tapping recognition. In addition, Taprint needs to update the
training set as a user taps. Performing such real-time update
is simple for nearest-neighbor methods, but infeasible for
computationally intensive machine learning algorithms.

Single tap authentication. To realize one-time valida-
tion with only one tap, the simplest form is to draw the
boundary of the sample distribution. If the test sample is
out of the edge, it is regarded as the unauthorized sample.
Unfortunately, our examination of collected data shows that,
most of the data from the same position has an irregular
distribution instead of a circle distribution which leads to
difficulty of drawing the edge of the samples distribution. In-
terestingly, we observe that the density of a sample set from
the same position of a hand of the same user remains stable,
which means that the pairwise distance between samples
is similar. Based on this observation, we propose a density-

based one-class classifier, called DenID. An unauthorized test
sample is far away from the authorized sample sets. Thus,
if an unauthorized test sample is added to the authorized
samples set, the density of the sample set decreases. More
specifically, the density of a samples set can be represented
by the following relation,

D1=

∑N−1
i=1

∑N
j=i+1 di j

C2
N

, (10)

where di j is the distance between sample ith and jth. N is the
number of samples in the training set. When a test sample is
added to the samples set, the density of the new set becomes,

D2=

∑N−1
i=1

∑N
j=i+1 di j +

∑N−1
i=1 di(N+1)

C2
N + N

, (11)

where N + 1 is the index of the test sample. Finally, if D1>
D2 + th, the test sample is considered as unauthorized. Note
that th is a threshold. A larger threshold means more false
acceptance rate (FAR) while a smaller threshold means more
false rejection rate (FRR).

7 CALIBRATION
We design a calibration mechanism to ensure robustness

against tapping behavior variations, location deviations, and
feature changes over time.

7.1 Real Time Manual Calibration
The vibration features may change due to user’s tapping

habit and tapping position variation. To cope with this chal-
lenge, we introduce a real-time manual calibration mecha-
nism for the keypad use case. To sustain false recognitions,
Taprint displays top 2 candidate keys on the touch screen
when a user types. Users can touch to choose the candidate
key showing on the touchscreen and update this key to the
training set when an error key occurs. Owing to the sim-
ple nearest neighbor matching algorithm, Taprint is able
to update the training set over time without the hassle of
retraining a model.

It is worth noting that we do not update the initial training
set but update a copied training set in the memory. This im-
plies that once the system is used, the copied training set in
the memory is cleared. There are several motivations behind
this design. First, if we update the initial training set continu-
ously over time, users may update an error key into the initial
training set incautiously, which pollutes the initial training
set. Second, adversaries may insert the unauthorized samples
into the training set. Based on these observations, we also
leverage a reset mechanism for the training set when users
feel that the initial training set does not work anymore over
time and requires one-time validation. This is similar to the
reset mechanism for the fingerprint sensor on smartphones.



Figure 8: Illustration of sample distribution of different
tap strength using the MDS technique.

(a) Single-threshold (b) Multi-threshold

Figure 9: Sample result of the multi-threshold
calibration mechanism.

7.2 Multi-Threshold Self Calibration
In case of single-tap authentication, Taprint cannot adopt

the real-time update mechanism as adversaries may update
and insert the unauthorized samples into the training set.
Therefore, it guides users to input a variety of samples into
the initial training set with different tapping force and slight
deviations from the target position. This is again inspired
by the fingerprint sensor calibration on smarpthones, which
requires a user to touch the center of the finger several times
and then touch the surrounding finger multiple times, so that
the system obtains different variations of training samples.
However, as various training samples are divided into dif-
ferent clusters, they have disparate densities, which brings
in a great complexity into the DenID algorithm. For exam-
ple, a cluster with heavy tapping force has a small density
whereas a cluster with gentle tapping force has a higher
density, as shown in Figure 8. Hence, we are unable to deter-
mine a threshold to draw an edge of the samples distribution
of multiple clusters. Therefore, we further propose a multi-
threshold calibration mechanism to draw multiple bound-
aries of different clusters. Figure 9 compares a sample out-
come between the single threshold and the multi-threshold
mechanism. Note that, we use the Multiple Dimensional Scal-
ing (MDS) technique for visualization purpose and reduce
the dimension in Figure 8 and Figure 9. We now proceed to
describe the multi-threshold calibration.

Rough Clustering: First, we need to find mutations in
the distance between two samples. This sudden change in
pair distance is the first basic idea of distinguishing different
clusters. More specifically, we find two samples with the
closest distance in the training setU at the beginning, and
then add them into the visited set R. In order to find the next
sample Pi , we design

Pi = argmin
Pi ∈{uR

DiR , (12)

where DiR is the distance between Pi and R. We define
DiR =mindi j (13)

where di j is the distance between Pi and Pj , Pi ∈R, Pj ∈ {uR.
We store DiR into array θ . Going through all the samples, we
set the threshold to find the location of the mutated distance.
We set the threshold to µ +σ . µ and σ are the mean and

variance of array θ , respectively. When the distance between
two samples is less than this value, we consider that the
corresponding samples belong to the same cluster. Besides, if
the distance value in the distance array D is smaller than the
previous value, we consider that the corresponding samples
should be in the same cluster.

Fine Clustering: To determine whether two clusters are
similar, we use the density concept. When two clusters are
merged and the density is hardly changed, we consider that
the resultant two clusters are similar. Specifically, before
the merging operation, the density of cluster C1 is d1, and
the density of the new cluster after merging C1 and C2 is
d2. When d2/d1 is less than a certain threshold, these two
clusters are considered as similar enough to be merged. In
accordance with our experience, we set the threshold to 1.05.
While merging two clusters, it is stipulated that a cluster
with a small number of samples should be combined with
a cluster with a large number of samples. In the merging
process, one cluster may be similar to the other two clusters.
In this case, the cluster is preferentially merged to a cluster
that is most similar to that cluster.

8 EVALUATION

8.1 Implementation and Experimental
Setup

We have implemented Taprint as a standalone application
program on the LG G Watch W100 with a 37.9 × 46.5 mm
screen, 1.2 GHz Quad-Core processor, a RAM with 512 MB,
400 mAh of battery and Android Wear 1.0.5. Taprint uti-
lizes the built-in accelerometer and gyroscope (InvenSense
MPU6515) in the smartwatch, and acquires the motion read-
ings through existing Android Wear APIs to detect the finger
tapped vibration. The maximum sampling rate through the
APIs is only 100 Hz. Through the short time Fourier fre-
quency spectral analysis, we observe that the frequency fea-
tures of vibration signals caused by finger tapping should be
from 10 Hz to 250 Hz, which requires at least 500 Hz Nyquist
sampling rate. To address this challenge, we have modified
the Linux kernel on the smartwatch. Specifically, our kernel
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Figure 10: Confusion matrix of 12 keys, where (a) both the training and test samples are from the legitimate
users (b) the training samples are from the legitimate users while the test samples are from the attackers.
driver interface configures the IMU registers to realize the
documented high-speed sampling allowable by the low-layer
hardware. Noted that the IMU we used in LG G Watch is
used in many other popular smartwatches, including the LG
Watch Urbane, Moto 360, Samsung Gear 2 and Gear Fit.

We have implemented all the components of our system
including signal detection, feature extraction and the recog-
nition algorithm on a COTS smartwatch. A user interface
was designed to guide the user to train and use Taprint.
We have also implemented a T9 input method based on a
trie [48] to support English input, which maps 12 numbers
to 26 characters. For the current implementation, the aver-
age end-to-end latency is 232 ms with a standard deviation
of 26.5 ms from inputting the key to the display of the in-
put. The initial training process lasts for about 1 mins. We
measure the power consumption of the smartwatch using
“Battery Historian” from Google. Specifically, three states
are measured: 1) idle with the display on, 2) Taprint with
power on but without key input, 3) Taprint with power on
and continuous tap input. Since the platform is only able
to measure the percentage of the battery consumption, we
record the time duration for consuming 1% battery for each
state. The resulting time duration in each state is 215 s, 188
s, 180 s, respectively. Given the 400 mAh battery capacity
and the 3.7 V working voltage, we calculate the resulting
power consumption of each state, which is 247.8 mW, 283.4
mW, 296 mW, respectively. Thus, Taprint only consumes
an additional 48.2 mW level of power on top of the base
power consumption. For comparison, we also conduct the
measurement when running a step calculation application,
resulting in a power consumption of 288 mW. The power
consumption of Taprint is similar to the typical application
running on the smartwatch.

We have recruited 128 participants (43 of them are female)
from our university in the age range between [19, 26]. Be-
sides, their body mass indexes (BMIs) are ranging from 17.16
(lean) to 29.28 (obese). To demonstrate the basic performance
of Taprint, 113 participants were asked to tap on four ran-
dom locations (4 knuckles) for the PIN code password, and
30 participants were asked to tap on all locations (12 knuck-
les), each for 30 times to generate the basic data set (with

113 × 4 × 30 + 30 × 12 × 30=24360 samples in total). Fur-
thermore, in order to examine the robustness of our system,
some of the participants were asked to record the data under
different experimental conditions, which will be specified in
the following relevant sections. Each of the participants was
designated as the legitimate user in turn to train the system,
in the meanwhile the other subjects were set to be attackers
for testing. The length of the training and test data sets are 20
samples and 10 samples for each key of a person, respectively.
We repeated all the experiments for 10 times and calculated
the mean value. The default experimental environment is a
typical office room with around 44 dB ambient noise level.
The smartwatch is worn on the left wrist in a comfortable
manner with hand floating in the air.
Unless otherwise specified, all the experiments are

launched based on the default setting discussed above.
Note that the experiments were approved by the relevant
institutes in our university.

8.2 Evaluation Metrics
VSR and AFR of PIN Code Authentication. The ver-

ification success rate (VSR) is defined as the success rate
of inputting a complete PIN sequence by a legitimate user,
while the attack failure rate (AFR) is defined as the failure
rate of inputting a complete PIN sequence by an attacker.

ROC Curve of Single-tap Authentication. We define
FAR as the ratio between the number of falsely accepted at-
tacker samples and the total number of attacker test samples,
and FRR as the ratio between the number of falsely rejected
legitimate samples and the total number of legitimate test
samples. We obtain the corresponding FAR and FRR pairs
by adjusting the identification threshold and depict the re-
ceiver operating characteristic (ROC) curve, which shows
the equal-error rate (EER) where the FAR is equal to the FRR.

8.3 Accuracy
In this section, we evaluate the baseline performance of

Taprint which includes the verification of legitimate users
while recognizing the users’ tapping input. We also inves-
tigate the impact of different training set size and different
sampling rates.
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Figure 11: The VSR and AFR with
multiple trials.
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Figure 13: Impact of initial training set size.

8.3.1 Baseline classification accuracy. To mark a baseline
accuracy of Taprint, we ask 30 participants to tap on twelve
designated locations (see Figure 1) each for 30 times. The
confusion matrix of recognition accuracy for 30 participants
is shown in Figure 10(a). It demonstrates that Taprint obtains
an average accuracy of 95.64% for twelve keys. In contrast,
when the training and test samples are from different users
as shown in Figure 10(b), the accuracy is very low, which
makes it difficult for adversaries to type with Taprint. Note
that there will always be an output due to the classification
method even though the distances between training samples
and the test sample are large. To improve the security, we
set a threshold to prevent from showing a result when the
distance is bigger than the threshold in the real time system
(default to 20 in Euclidean Distance).

8.3.2 Verification accuracy.
PIN Code Authentication. Since a user need to input a

complete PIN sequence to pass through the authentication,
the verification success rate (VSR) of one trial is calculated
as the product of the individual accuracy of 4 random keys.
Figure 11 shows the VSR with respect to different numbers
of trials. The VSR reaches 94% with a single trial, rises to
around 99.5% with two trials and then it approaches nearly
100%. This indicates that a legitimate user can definitely pass
through the authentication within 2 trails using the PIN code
lock. Overall, the results show the effectiveness of the PIN
code lock in authenticating legitimate subjects. The AFR is
also provided in this figure, but the details will be elaborated
in Section 8.4.

Single-tap Authentication. Figure 12 demonstrates the
effectiveness of verifying a legitimate user through single-
tap with ROC curve using a basic data set of 113 subjects.
The single-tap location was set to a random location on
12 knuckles. On average, single-tap authentication obtains
1.29% false rejection rate (FRR) when the false acceptance
rate (FAR) is 5%, which indicates that only 1.29% of the au-
thorized subjects are rejected and 5% of the total subjects
gain unauthorized access.
We also compare the outcome of our designed classifier

DenID with that of the one class classifiers K-Nearest Neigh-
bor (KNN) and Support Vector Machine (SVM). As shown
in Figure 12, when applying DenID, Taprint obtains a much

lower EER at 2.4% than that of traditional classifiers (at
around 8% for KNN and 11% for SVM), which suggests that
our feature optimization method is highly effective.

8.3.3 Impact of Training Set Size. In this experiment, 8 of the
participants were asked to tap on all locations (12 knuckles)
each for 100 times (8 × 12 × 100=96000 samples in total)
in order to study the impact of different sizes of training
sets. Figure 13 plots the resulting variance of accuracy as
the number of initial training samples increases from 2 to 5
initially and then 5 and 10 afterward.

PIN Code Authentication. Figure 13 shows that the av-
erage classification accuracy is around 80% even with 2 initial
training sample. The accuracy then escalates to above 98% on
average when the training set size enlarges to 20. It can show
only a marginal improvement on the further enlargement
of training set size. We can also observe that the employ-
ment of both GCC and weighted features provides better
performance.

Single-tapAuthentication.As for the single-tap authen-
tication, 2.7% equal error rate (EER) can be achievable on
average with only 2 training instances for each user, and
it further declines to below 1.0% when we enlarge the size
of the training set to 20 or more. From the declining EER
curve, we learn that a larger size of training set gives more
information to the identifier and characterizes a user more
precisely. Note that GCC and weighted features decrease the
EER as shown in Figure 13.

8.3.4 Sampling Rate. Figure 14 (a) shows the average EER
and classification accuracy at different sampling rates. The
average EER decreases from 5.4% at 100 Hz to 1.9% at 500
Hz. Moreover, the average classification accuracy are 94%
and 96.8% with the 100 Hz and 500 Hz sampling rate, respec-
tively. We believe that more distinctive vibration features
are incorporated owing to our implementation of sampling
rate on the smartwatch. In Section 8.5, we will verify that the
improved sampling rate also contributes to the robustness.

8.4 Security Analysis
In this section, we validate that our proposed authentica-

tion methods are secure under the 4 types of threats men-
tioned in Section 2.2.



Table 1: EER(%) and AFR(%) of four threat models
with 20-sample training

Type of Attack EER AFR AFR
(1 trial) (5 trials)

Zero-effort Attack 0.80 99.92 99.60
Credential-aware Attack 2.40 99.65 98.27

Observer Attack 1.12 99.72 98.60
Intimate Attack 1.74 99.32 96.65

Zero-effort Attack. We have recruited another 20 par-
ticipants from our university as attackers to attack the 113
subjects mentioned in Section 8.1. Each attacker was asked
to randomly tap on his hand back for 40 times to generate
the attack sample set. In Table 1, the results are consistent
with our intuition that the random guesses are nearly impos-
sible to pass through either the single-tap-based or the PIN
code-based authentication even with 5 trials.

Credential-aware Attack.We conduct this experiment
using the data collected from the 113 participants. Each par-
ticipant was alternatively taken as the victim, and the re-
maining 112 participants playing as attackers. From Table
1, for PIN code authentication, there is a 99.65% chance for
attackers to be blocked outside the system within a single
trial, and the AFR only drops a little to 98.27% within 5 tri-
als. For the single-tap authentication, the EER is 2.40%. The
results show that our methods guarantee the security under
credential-aware attack.

Observer Attack. We video-record the data collection
process of 20 out of 113 participants, and demonstrate the
videos to other 10 participants who act as attackers. The
attackers were asked to mimic the tapping motion of victims.
They were required to practice at least 10 times before gen-
erating 10 mimicry tap for each designated location. Under
the observer attacks, our system also maintains high secu-
rity (i.e., 98.6% five-trial AFR and 1.12% EER). Although the
attackers tried their best to mimic the authentication mo-
tion of legitimate users, there are still intrinsic physiological
features that are impossible to be identical among users.

Intimate Attack. We have asked 5 attackers to tap on
the four designated locations on the hand back of victims
(each for 10 times) to generate the intimate attack dataset.
The results are shown in Table 1, which verifies that our
method is secure to the intimate attack.We speculate that this
result comes from the impact of behavioral variation which
is difficult for attackers to mimic via their observation. Note
that Taprint keep robust from the variations of behavioral
usage based on the update and multi-threshold calibration.
As shown in figure 4(a) and figure 4 (b), the points with the
lowest Euclidean distance are always from the same users
(red points). Note that the gray small circles are the distance
from different users, which are always with bigger distance.

Thus, even behaviors are different, the tapping vibration
from the same person still keeps unique.

8.5 Robustness
In this section, we examine the robustness of our system

under various disturbances in practical use cases. The experi-
ments were conducted during one month and under different
situations, such as walking, hand-wash, a noisy office, sub-
ways, and airplanes.

8.5.1 Strength of Tap. To examine how the result is affected
by different initial tapping force, we have asked 15 partici-
pants to tap on each key 30 times both gently and heavily,
resulting in 1920 responses [(4 keys × 15 users × 30 times ×
2 ways).]
The results show that the classification accuracy drops

to around 50% when the test tap force is different from the
training tap force. Nonetheless, when our classifier is built
with both “heavy” and “gentle” data, the accuracy remains
the same level with the accuracy of using the same force.
Therefore, we require users to apply different tap strength for
the initial training set. However, for one-time validation of
single-tap unlock, the EER is only 8% even the initial training
set contains the samples with varying tap strength. Conse-
quently, we utilize the multi-threshold calibration mecha-
nism and the result shows that the EER reduces to 2%.

8.5.2 Resilience to Displacement. We further measure the
sensor displacement and tapping location displacement,
which might impact the reliability of Taprint.

We first form an anchoring group when the smartwatch
is worn at a fixed position, and then generate other 6 test
positions, which deviate from the anchoring position by
2 mm to 20 mm. We have asked 5 participants to tap on
12 keys each for 30 times with the increasing deviation to
generate the dataset (5 × 12 × 30 × 7=12600 responses in
total). The resulting impact on the performance is shown in
Figure 14 (b). On average, the EER and classification accuracy
suffers minor impact when the deviation of the smartwatch
is less than 12 mm. Further deviation over 12 mm leads to
an unacceptable degradation of system performance.
As for the tap deviation, we know that even for tapping

on the same key, the slight deviation of each tap occurs all
the time. To investigate the impact on the performance of
deviation of taps, we ask 17 participants to consecutively tap
on each key for 30 times, and we take this group of keys as
the center point. Then, they were asked to tap another 30
times respectively with an interval of 5 mm from the center
point. The results show that our system is robust and suffer
no impact with the spatial separation of 5 mm.
Note that we then reduce the sampling rate to 100 Hz

(which modern smartwatches’ APIs generally limit the sam-
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Figure 14: Variation of EER and average accuracy (a) for different sample rate, (b) with different device location,
and (c) over the time.
Table 2: Accuracy(%) and EER(%) of different user
state & environment with 20-sample training.

Item& Acc. EER

Mobility 92.1 4.51
After Hand-wash 97.72 1.65
Quite office (44 dB) 96.43 2.40
Noisy office (85 dB) 97.44 1.76
Subway (65 dB) 96.65 2.47
Airplane (77 dB) 94.73 3.35

pling rate to it) and conduct the same aforementioned ex-
periments. The accuracy reduces to about 50% when a 2 mm
wristband deviation or 5 mm tapping displacement happen.
These indicate that the the sampling rate increase not only
improves the accuracy (see Section 8.3), but also enhances
the robustness.

8.5.3 Arm Rotation. In practice, users might maintain differ-
ent gestures when they are tapping. To evaluate the impact
of such variations, we collected data under three different
gestures of wrist rotated: (1) gesture 0 indicates the plane of
hand back parallels to the ground, (2) gesture 1 indicates the
arm rotate 45 degrees outwards from gesture 0, (3) gesture
2 indicates the arm rotate 45 degrees inwards from gesture
0. We collect the corresponding data of 18 participants from
each location for 30 taps (3 × 18 × 4 × 30= 6480 responses in
total). The results show that the accuracy is not compromised
by different arm rotations.

8.5.4 User State. In this part, we examine the system robust-
ness when users are walking or after having washed hands.
We have asked 20 of 113 participants to tap on four locations,
each for 30 times after washing their hand and when they
were walking on the running machine (2.5 km/h).

A.Mobility:A noise interference occurs due to the physical
movement that usersmake in the usage process of Taprint. To
investigate how mobility affects the performance of Taprint,
i.e., the error detection rate and the EER, we have conducted
the following experiment and collect the data when partici-
pants are walking and tapping simultaneously. The result in
Table 2 shows the individual statistics of every participant.
Compared with that in an office, Taprint still obtains a good
performance with average accuracy at 92.1% and EER at 4.5%.
The reason of good performance is that the human mobility

only caused low-frequency noise (less than 10 Hz)[36] and
we already have removed it through a Butterworth high pass
filter with 20 Hz cutoff frequency (see Section 5.1).

B. Hand-wash: Having hands washed is also a typical activ-
ity that users do many times in a day. We wonder if it causes
a slight drift of underlying muscle tissue, which successively
causes a change in the damping and elasticity coefficients.
However, in Table 2, there is no impact on the performance
of Taprint after having the users’ hand washed.

8.5.5 Different Environment. We evaluate Taprint in four
scenarios: a quiet office environment (i.e., control group),
noisy office with loud music, subway, and flying airplane.
These four environments are the typical representation of our
daily lives (ranging from casual to tough) in which Taprint
could be used. Our test scenarios represent a variety of noise
levels, ranging from 44 to 85 dB.

Table 2 enumerates the average EER and accuracy in differ-
ent environments. The results demonstrate remarkably good
performance comparing to the control group in a quiet of-
fice (96.43% average accuracy and 2.40% EER). It reveals that
the authentication system is robust and reliable in different
environments.

8.5.6 Temporal Stability. It is crucial to verify that Taprint
maintains the temporal stability (i.e., the model of a user
is trained once and the resultant system keeps operating
in a stable manner over the time). Two experiments were
conducted spanning over a month with 6 times recorded data
at different time periods as shown in Figure 14 (c). In the first
experiment, 8 participants were asked to tap 12 knuckles for
6 times, respectively, to initialize the speed dial for number
input. Then, participants test the speed dial by tapping each
key 30 times. The results show that the accuracy is more
than 95% over one month. We observe that when an error
key appeared, the participants could get the correct keys by
entering 1 or 2 keys under the real-time manual calibration
mechanism. In the second experience, 8 participants were
asked to tap on four designated location, each for 30 times
with varying tapping force. Each time, they were required to
wear smart wristbands in the rightest of the wrist and tap 30
times for the purpose of test. To summarize, from the figure,
it is obvious that there is no significant change of EER over
the one-month period under the multi-threshold calibration



Table 3: The average ranking of different
authentication method.

Item 1) 2) 3) 4) Ranking

PIN code 3.8 3 4 3.8 3.65
Password 5 5 5 5 5
Pattern 2.8 3.2 2.8 2.6 2.85

PIN code(Taprint) 2.4 2.8 2.2 2.2 2.4
Single-tap(Taprint) 1 1 1 1.4 1.1

mechanism.

8.6 User Study
One of the design goals of Taprint is to make it univer-

sally applicable and user-friendly. We have investigated the
usability of Taprint, , by comparing it to the common au-
thentication (i.e., PIN code, password, and pattern lock) and
input methods employed on COTS smartwatch.
The user study involves ten participants. We asked the

participants to initialize their PIN code lock (i.e., 4-digit num-
bers), password lock (i.e., 4-digit character), pattern lock (as
they prefer). The password was selected from the random
numbers or the character table. Each participant then an-
swers the questions after performing all the methods in a
random order. Then, we asked them to rank the five methods
regarding the following four perspectives: 1) the speed of
login, 2) the easiness to memorize, 3) the convenience to
perform, and 4) the difficulty to cause the error. On the other
hand, in order to measure the text input accuracy and speed,
we required participants to enroll in two sessions of testing,
using Taprint and Huawei Watch2, respectively but in a ran-
dom order, each involves typing 120 random characters of
twelve keys (ten for each).
The average ranking of the five authentication methods

is shown in Table 3. Moreover, the statistics for the input
method are shown in Table 4, where the user experience
scores from 0 to 5. In the cases of PIN code, password and pat-
tern lock, the system incurs a certain cognitive load on users.
On the contrary, users can tap precisely on the designated
location without any thought when applying a single-tapped
lock. Furthermore, in the cases of the existing methods, the
fatter finger of a user results in more errors on the small size
screen of the smartwatch. To summarize, Taprint is regarded
as the faster, easier, more convenient and less error-prone
one. Besides, it also earns higher acceptance compared to
the existing methods.

Taprint utilizes the accelerometer and gyroscope on COTS
smartwatch to detect the finger tap vibration signal, which
usually requires the sensor to be well-contacted with users’
skin to obtain good quality data. Therefore, we asked every
participant to grade their feeling about the tightness and
comfort degree by launching two Likert-scale question: par-

Table 4: The input accuracy, speed and user
experience of Taprint and Huawei Watch2

Item Accuracy Speed(s) Score

Taprint 95% 170 4.5
Huawei Watch 2 83% 218 2.2

Tightness Comfort Traning accept

2.8 4.8 positive

ticipants response an average tightness degree of 2.8 (1 =
loose, 5 = tight) and an average comfort degree of 4.8 (1 =
uncomfortable, 5 = comfortable).

9 RELATEDWORK
9.1 Authentication Methods

A variety of traditional authentication methods were stud-
ied but do not fit well for smartwatches due to the constraints
of screen size, battery capacity and computing power. Among
these, password [1,2] and gridlock recognition [3,4] are well
known. However, the passwords and patterns are easy to for-
get by users. The password is also quite obtrusive for users
to enter when accessing the applications such as e-mails,
mobile payment and so on. Moreover, these technologies are
vulnerable to shoulder surfing and smudge attacks. Another
critical problem is that the screen size of the smartwatches
are too small to interact and some even do not have touch
screens. On the other hand, voice authentication [5,6] is sus-
ceptible to noise and can easily be simulated by professional
software. Moreover, one can also record and playback the
voice of legitimate users.

Fingerprint [7], facial recognition [8] and iris scans [9]
can be obtained or replicated by adversaries via a camera.
Another critical concern is that these technologies usually
stir privacy concerns of the users and require the installa-
tion of expensive equipment which typically do not exist in
commodity smartwatches. Using tissue response obtained
by electrical current, [10] requires an extra device, whereas
Taprint does not require any extra device to detect vibration
signal. Other identification methods such as gait recognition
[11-15] and in-air signatures [16-18] can still be simulated.
In addition, such continuous action is inconvenient since
the users need to walk while unlocking the screen. On the
other hand, Taprint is always ready to be used in real-time.
Recently, there also exist some methods that conduct the
authentication operation in a constant manner for wearable
devices. Cardiac Scan [43] authenticated users by monitoring
the cardiac motion feature in real time. Vauth [44] paired
speech by a user between the voice from the air and the acous-
tic from the body to authenticate users, and the voice may
sensitive to the surrounding noise level. However, Taprint
authenticated users based on the hand biometry and tapping
behaviors. Therefore, Taprint is more practical and reliable.



9.2 Keystoke Recognition
Certain authentication techniques recognize users based

on typing behavior, e.g., manner and rhythm of typing char-
acters. Early work used the typing behavior on the PC key-
board for authentication [19,20]. Authentication based on
keystroke dynamics have also been implemented on mo-
bile phones. Utilizing the typing behavior on mobile phone
screens, a series of research work proposed different au-
thentication schemes [21-23]. Multi-touch [24] proved that
these types of technologies relying solely on the behavioral
information are not stable, and proposed to combine hand
geometry information to achieve authentication. However,
these approaches rely on touch screens, and are hard to be
implemented on wearable devices. Since the touch screen
of a smartwatch is too small, some studies have proposed
to use the surface of the hand’s skin as an extended input
interface, including the use of lasers [25], vibration sensors
[26][41], pressure sensors [27], cameras [28] or implanting
sensors under the skin [29], to identify the keystrokes. [26,
41] used additional vibration sensors to detect the tapping
vibration, while Taprint used existing inertial sensors on the
commodity smartwatch. TapSkin [45] and iDial [30] use the
microphones to recognize different keystrokes on the back
of the hand. The primary purpose of these studies was to
achieve text input. However, a microphone is sensitive to
noise, and thus users cannot type and speak simultaneously.
In contrast, Taprint is the first to use modified IMU on the
commodity smartwatch for text input while simultaneously
achieving user authentication.

9.3 Vibration Recognition
Viband [31] leveraged accelerometers of a smartwatch

to classify hand gestures, such as flicks, claps, scratches,
taps, and can also recognize grasped motor-powered objects.
Serendipity [32] leveraged accelerometer and gyroscope to
recognize five finger gestures, such as pinch, tap, rub, squeeze
and wave. SpiPhone [33] also used the accelerometer to deci-
pher keystrokes. AGIS [34] used the accelerometer to recog-
nize tools, such as a drill, grinder, rotary hammer based on
their reduced vibration. It has also been shown that mechan-
ical vibration frequencies can be recognized through a “wire-
less vibrometry” technique [49]. On the other hand, Taprint
enables the authentication functionalities through the recog-
nition of finger vibration signals in different positions of
different users by utilizing the accelerometer and gyroscope.
Vibration-based authentication methods have also been in-
vestigated. Headbanger [35] employed accelerometers on
smart glasses to analyze the behavior of head movement for
authentication. VibID [36] generated vibration signals via a
motor on the wrist and then collected the vibration response
as a user identification using an accelerometer. However,

the vibration motor on the body is obtrusive to users. Vib-
write [37] also utilized a vibration motor on the door. When
users touch the door, the vibration propagation scenarios
vary, which is used as a feature to recognize users. Com-
pared to these two active vibration techniques, Taprint is a
passive system which only uses the motion sensor in COTS
smartwatches to detect the vibration from finger tapping.

10 CONCLUSIONS
To summarize, the main contribution of this paper is to

address a secure text input system for a commodity smart-
watch by exploiting the fine-grained feature of dispersion
attenuation of the tapping-induced vibration signal. This
contribution is broken down into the following main as-
pects. First, to the best of our knowledge, we are the first
to propose a novel secure text input system for smart wrist-
bands solely relying on themotion sensors on the commodity
smartwatch, without requiring any extra dedicated hardware.
We believe that Taprint paves the way for secure human-
wearable interactions. Second, we have built an on-body
tapping induced vibration model and verify its feasibility for
secure input. We have proposed a set of novel vibration de-
tection/classification mechanisms, including a fine-grained
features extraction scheme and a calibration scheme to en-
sure the robustness and temporal stability. Third, we have
implemented Taprint as an efficient application running on
COTS Android smartwatch and validated its performance
through comprehensive examinations under some realistic
attack scenarios.
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