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Toward Device-free and User-independent Fall Detection

Using Floor Vibration
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The inevitable aging trend of the world’s population brings a lot of challenges to the health care for the elderly.

For example, it is difficult to guarantee timely rescue for single-resided elders who fall at home. Under this

circumstance, a reliable automatic fall detection machine is in great need for emergent rescue. However, the

state-of-the-art fall detection systems are suffering from serious privacy concerns, having a high false alarm,

or being cumbersome for users. In this article, we propose a device-free fall detection system, namely G-Fall,

based on floor vibration collected by geophone sensors. We first decompose the falling mode and characterize

it with time-dependent floor vibration features. By leveraging Hidden Markov Model (HMM), our system is

able to detect the fall event precisely and achieve user-independent detection. It requires no training from

the elderly but only an HMM template learned in advance through a small number of training samples. To

reduce the false alarm rate, we propose a novel reconfirmation mechanism using Energy-of-Arrival (EoA)

positioning to assist in detecting the human fall. Extensive experiments have been conducted on 24 human

subjects. On average, G-Fall achieves a 95.74% detection precision on the anti-static floor and 97.36% on the

concrete floor. Furthermore, with the assistance of EoA, the false alarm rate is reduced to nearly 0%.
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1 INTRODUCTION

Worldwide, there were more than 703 million people aged over 65 years in 2019. By 2050, that
number is projected to be more than double its size in 2017, hitting to around 1.5 billion [42]. For
the seniors, fall is one of the most prevalent problems that they have to face daily. According to
the World Health Organization, approximately 28–35% of adults aged 65 and older fall each year,
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increasing to 32–42% for those who aged over 70 [32]. The hazard of non-fatal falls commonly
includes bruises, internal bleeding, and bone fractures. When it comes to a fatal one, the fall event
will be the symbol of a man’s death. Among all the fall injury events, about 60% of them happen at
home [12]. Based on the statistics above, around 139 million people aged over 65 will fall at home
at least once a year. Among them, a large number of elders who live alone cannot get medical
treatment in time, and the prolonged lying on the ground may turn a non-fatal fall into a fatal one.

Numerous literature proposed fall detection machine using vision, Inertial Measurement

Units (IMUs), and radio frequency. However, none of these fulfills the requirement of being pri-
vacy protected, device free, user independent, and low false alarm. As a human fall will cause a
huge impact on the floor, one way to detect a human fall is to analyze the floor vibration, but only
few works can be mentioned. In Reference [25], the authors proposed an automatic fall detection
machine by deploying an accelerometer on the floor. However, this system requires the assistance
of an acoustic microphone at the same time. It only evaluates a mimicking human doll falling
forward, and it is a data-based system that fails to work using other test samples.

To implement a reliable vibration-based fall detection system, we need to address the following
challenges: (i) The floor vibration profiles induced by many other objects fall from a certain height
are similar to human fall. How can we distinguish a risky fall event from others? (ii) It is impossible
to let the elders fall on the floor to train a classification model as most systems do. Is there any
way to realize a user-independent fall detection system by building a general template for all the
elders? (iii) The demanding detection task also results in a high false alarm rate, making the system
user-unfriendly. What could we do to reduce the false alarm rate without the intentional intervene
by users?

To address the above challenges, we first introduce and analyze two typical falling mode: trip and
slip. By comparing the waveform and spectrum of vibration signals induced by different events, we
find out that a floor vibration profile of human fall has two special transition states. We characterize
the floor vibration events (FVEs) based on the Discrete Wavelet Transform (DWT), which
provides a good tradeoff for signals between time and frequency domain and enables a good mea-
surement of FVEs. Then we train a recognition template using Hidden Markov Model (HMM)

with a small number of training samples (e.g., 50 fall samples in our baseline evaluation). Based on
this recognition template, we are able to recognize the testing fall samples from untrained users.

However, some of the vibration events have a similar pattern of a human fall after applying
DWT to the vibration signals and thus cause false alarms. For addressing the third challenge, we
propose a reconfirmation mechanism in the assistance of Energy-of-Arrival (EoA) positioning
to reduce the false alarm rate. EoA is an indoor positioning algorithm that calculates the ratio of
received signal energy between each pair of sensors. In contrast to the time difference of arrival

(TDoA) mechanism, which requires high temporal resolution provided by a high sampling rate,
EoA requires no temporal information recorded by sensors but only the energy of arrival. This
makes the EoA mechanism has a better performance especially when the sampling rate is low and
the time estimation error is high.

We prototype two versions of G-Fall for two different types of floor, respectively. Three geo-
phone sensors are deployed on the real-time fall detection system. Experiment results show that
G-Fall can detect the human fall event effectively. G-Fall achieves 95.74% detection precision with
a false alarm rate at 5.30% on the anti-static floor and 97.36% detection precision with a false alarm
rate at 4.76% on the concrete floor. Furthermore, the false alarm rate is reduced to nearly 0% with
the assistance of the EoA reconfirmation mechanism.

In summary, the main contribution of this article lies in the following aspects.

• To the best of our knowledge, G-Fall is the first work to realize a privacy-protected, device-
free, user-independent, and low-false-alarm fall detection machine with geophone sensors.
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• We propose a novel mechanism based on EoA that enables the system to achieve fine-grained
indoor positioning without high sample frequency. The false alarm rate is reduced from
5.30% to nearly 0% using EoA.
• We design and implement the real-time automatic fall detection machine leveraging the floor

vibration. Extensive experiments in a typical indoor scenario demonstrate its feasibility of
fall detection, achieving high precision on the anti-static and concrete floor.

The remainder of this article is organized as follows. We first introduce the related work in
Section 2. Then in Section 3, we analyze the vibration waveform and spectrum, followed by the de-
scription of design goals and three main modules of G-Fall in Section 4. We illustrate our method-
ology in Section 5. Section 6 explains the implementation details of G-Fall prototype. We pro-
vide evaluation results of G-Fall in Section 7. Finally, the discussion and conclusion are given in
Sections 8 and 9, respectively.

2 RELATED WORK

Existing fall detection systems: Over the past decade, extensive human fall detection systems
have been proposed, and the comprehensive survey are studied in References [31, 46, 48, 50]. Fall
detection systems can be mainly categorized as following four classes: vision based, IMU based,
RF based, and ambient sensor based.

Vision-based fall detection systems [5, 27, 41] can detect a falls event effectively after analyzing
a series of images recorded by high-resolution cameras using complex activity recognition algo-
rithms such as deep learning algorithms. Nonetheless, it lacks privacy concern; for example, it is
impossible to employ a camera in the bathroom to detect a slip event. Moreover, the vision-based
systems fail to work under dark environment and non-line-of-sight condition.

Numerous works utilized the embedded IMUs in the wearable device to detect a fall [22, 39, 44].
They can detect a fall event by monitoring and analyzing the reading changes of an accelerometer,
gyroscope, and inclinometer. However, it is obtrusive and user unfriendly to carry a device, and
elderly people always forget to wear the smartwatch.

Radio frequency is a good choice to realize device-free fall detection systems [1, 43, 45, 47]. They
require no on-body device and bring no privacy issues, which makes the wireless radio the most
promising and charming research trend to realize device-free fall detection systems. Nevertheless,
the high false alarm rate long has been criticized, and the multipath effect of wireless signals make
it difficult to work in a dynamic home environment. TL-Fall [52] attempts to mitigate the environ-
mental influence on Wi-Fi using transfer learning but only achieving around 85% sensitivity and
specificity.

As for ambient sensor-based system, audio [24] and floor vibration [25] are used to characterize
a human fall. The audio-based systems need to sense the sound of everything in the surroundings
and have poor resistance to noise, leading to a large proportion of false alarm. There are also many
challenges in realizing a fall detection system using floor vibration. However, the vibration signals
propagating through the floor suffer almost zero multipath effect. And the signals can retain well
even in a dynamic and complex environment [10]. In this article, we propose a device-free, user-
independent, and positioning-assisted fall detection system with only vibration sensors, which
can accurately distinguish a human fall from daily living activities or other objects that fall from
a certain height.

Vibration-based indoor positioning: Another important technique related to G-Fall is device-
free indoor positioning. Occupants can be located with ambient sensors instead of carrying wear-
able devices. RF signals, acoustic, ultra-wideband, cameras, and so on, are used for indoor posi-
tioning. To reduce the multipath effect of RF signals and acoustic, Floc [10] suggested a vibration
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Fig. 1. Process of a trip. Fig. 2. Process of a slip.

Fig. 3. Waveforms and spectrograms for body-induced vibration signals.

Fig. 4. Waveforms and spectrograms for object-induced vibration signals.

positioning methods with a SWIM algorithm to detect the footsteps. Reference [30] utilized the
wavelet transform and TDoA to localize the vibration of footsteps. Pan et al. designed a hardware
system called BOES [33] to collect footstep vibrations and track the occupants. However, these
works required a high sampling rate to capture the precise value of TDoA. We propose an EoA
mechanism to localize footsteps with the energy ratio between geophones in low frequency. We
successfully reduce the false alarm rate to nearly 0% with EoA.

Vibration-based intelligent sensing: There have been many interesting vibration-based in-
telligent sensing system proposed in recent years [17]. FootprintID [36] utilizes footstep vibrations
to identify occupants with an iterative transductive learning algorithm. Pan et al. [34] presented
a method to monitor multiple occupant traffic by sensing the ambient structural vibration. The
system achieves occupant traffic monitoring by acquiring signals from structural vibration sensors
and analyzing their features. Bales et al. [3] used footsteps vibrations to classify gender. References
[19, 20] used geophones to detect vibrations to monitor heartbeats when people are lying on a bed.

ACM Transactions on Sensor Networks, Vol. 19, No. 1, Article 5. Publication date: February 2023.
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Some works [8, 9, 26, 35] use vibrations to localize finger tapping to realize text input. TouchPass
[51] proposes a behavior-irrelevant on-touch user authentication scheme using the vibration of a
smartphone. Vi-Liquid [16] utilizes the vibration from an iPhone to measure liquid viscosity and
detects up to 30 kinds of unknown liquid. In contrast, G-Fall utilizes geophone sensors to collect
floor vibration data and detect a human fall in the indoor environment.

3 PRELIMINARY STUDY

The key reasons that the elderly are involved in a fall event include the following: (i) Physical
lesions incur uncoordinated walking or fainting, (ii) losing one’s balance on a slippery floor such
as in a bathroom, and (iii) falling over obstacles due to poor vision. Thus, we generally classified
the falling mode as trip and slip, as shown in Figures 1 and 2. During the process of a trip, the
knees usually hit the ground first, and then the hands on the ground provide support. In contrast,
a slip leads to the hip landing first followed by the support of hands or elbows.

In a typical house environment, there are many FVEs, such as human footsteps and falling
books, chairs, and bottles. Therefore, in this section, we first study the waveform and spectrum of
the objects mentioned above.

Experimental setup: We set up the pilot test in a 6.0 × 8.0-m laboratory. Three geophones
are respectively placed at three corners on the anti-static floor covering an area of 3.0 × 4.8 m, as
shown in Figure 11. This area can be estimated as a typical area of a living room or bathroom. The
sampling rate of G-Fall is set to be 1,190 Hz. For body-induced vibration, as shown in Figure 11,
we collect the signals of trips and slips on the black cross area and the footsteps along the track
with an interval of 60 cm. For object-induced vibration, we record the falling of a 400-ml bottle of
water, a 400-page book, and a 2.5-kg chair. The bottle and book fall from a 50-cm-high desk.

Body-induced vibration: The waveform and spectrum of trip and slip are shown in Fig-
ure 3(a)–(d), where high-energy frequency components are colored in red. During a trip, the human
body has a forward trend. In phase one, the knee is centered on the foot and uses the length of
the calf as the radius to make the circular motion. But in phase two, the remaining parts of the
body make the circular motion centered on landed knees, which results in a more considerable
angular velocity when the hands are landing. This process is represented as a waveform of rela-
tively low amplitude followed by a higher one in the time domain. As for a slip, in reverse, most
of the falling force is neutralized when the hip is landing. The support hands suffer smaller force
then.

There is a slight difference between a trip and slip, but they both comprise two obvious transition
states on account that different part of the body contacts the floor in sequence. Because two parts
of the body impact the floor one after another at a very short interval, the spectrum energy shows
a transition pattern of “high-low-high.” Compared to that of a footstep in Figure 3(e) and (f), a
human fall has a longer duration, a shorter transition interval, and higher energy.

Object-induced vibration: When it comes to an object-induced vibration event, from Fig-
ure 4(a) and (c), the waveforms for the book and chair seem to be more stable, unlike that of a
fall, which has two obvious transition states. This is because the rebound height of the chair is
relatively low and even nonexistent for a book. As for the bottle, after the rebound, it tends to roll
on the floor, resulting in longer vibration signals.

Summary of observations: From the analysis above, we have two observations: (i) the vibra-
tion signals of a fall event comprise two unique transition states, which is distinct from other events;
and (ii) a fall event, compared to a walk event that is the main vibration source in daily life, has
larger amplitude and longer duration. These two observations provide us with a hint to extract
energy features and leverage the HMM to detect a human fall (see more details in Section 5).
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Fig. 5. System overview of G-Fall.

4 SYSTEM OVERVIEW

4.1 Design Goals

G-Fall is designed to meet the following goals, which are the basic features if we want to put G-Fall
into practical use.

4.1.1 User-independent. Traditional fall detection systems are data based and adopt machine
learning algorithms that require the users to train their own falling models in advance. However,
it is impossible for these data-based fall detection machines to collect the fall data from the elderly.
Therefore, G-Fall needs to find a way to make sure it is a user-independent system for specific
users.

4.1.2 High Detection Precision. Timely fall detection and warning is about saving lives, and,
ideally, we do not want to miss the detection of each human fall event. Thus, we have to make
sure the system provides high detection precision for human falls.

4.1.3 Low False Alarm. It will be user unfriendly and obtrusive for elderly people if they need
to clear the alarm every time a false alarm occurs. People take hundreds of steps a day, and then
and then tens of warning messages will be sent if the false alarm rate is about 10%. Thus, we have
to find a suitable solution to reduce the false alarm to zero as much as possible.

4.2 System Overview

The system architecture of G-Fall comprises three major components to build a reliable automatic
fall detection system. The following is the description of these components.

4.2.1 Signal Detection. G-Fall employs three geophone sensors to convert the vibration signals
into digitalized electrical signals. Then the signals are denoised using a 20-Hz Butterworth high-
pass filter and segmented using an energy-based dual-threshold mechanism.

ACM Transactions on Sensor Networks, Vol. 19, No. 1, Article 5. Publication date: February 2023.
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4.2.2 Fall Detection. In the classification phase, G-Fall extracts the unique features through
DWT based on the observation after the decomposition of a fall event in the preliminary study.
Then, a HMM is applied to complete fall detection.

4.2.3 EoA Reconfirmation. To realize a low-false-alarm fall detection system, in G-Fall, we
adopt a straightforward but effective idea that leverages the assistance of indoor positioning. We
come up with a novel positioning algorithm, EoA, which achieves decimeter-scale positioning and
reduces the false alarm rate to nearly 0%.

Figure 5 presents the workflow of G-Fall. In the detection phase, the system continues to sense
vibration signals that break the dual threshold. When a vibration event is sensed, the collected
signals will be denoised and segmented. Afterwards, G-Fall extracts the signal features using DWT
and matches the pattern with the pre-trained HMM template in the database to judge whether a
potential human fall occurs. If so, then the EoA reconfirmation module will be turned on, and the
system will reconfirm the potential human fall with EoA mechanism by detecting the moving signs
of a human. A warning message will be sent out for asking help ultimately if there are no signs of
human movement in a certain time; otherwise, the system will regard the potential human fall as
a false alarm and keep sensing again without warning.

5 METHODOLOGY

In this section, we illustrate the details of G-Fall in three major modules.

5.1 Signal Detection and Process

5.1.1 Sensing and Denosing. The geophone is designed as a device for converting ground me-
chanical vibration signals into electrical ones. Figure 8 demonstrates the geophones we adopt, a
cylinder whose external diameter is 25 mm and the height is 30 mm. It is sufficient to detect a fall
with one geophone sensor, but the EoA positioning algorithm we design requires at least three
geophones. Human fall-induced vibration signals are realized in the low-frequencies domain (less
than 300 Hz), and we sample them using Raspberry Pi with a sampling frequency of 1,190 Hz. We
leverage a 20-Hz Butterworth high-pass filter to remove the noise caused by the direct current
component.

5.1.2 Segmentation. We adopt an energy-based dual-threshold scheme to catch a fall event [10].
The energy levels are calculated as the sum of the square of received signals in a sliding window.
The lower threshold is μ + σ , which is sensitive to break. And the higher one is μ + 3σ . The μ and
σ are the mean and standard deviation of signal energy, respectively. When the upper threshold is
exceeded, the lower threshold will be considered as the start point of the detected signals. Three
sensor channels have the same predefined dual threshold. If any one of three channels first breaks
the predefined dual threshold, then the start point will be defined based on that one and shared
across all channels. As for the endpoint, we set it at 0.8 seconds after the start point, as the duration
of a fall is usually around it. Note that when a potential fall event is detected, the upper threshold
will be reset for sensitive detection of a footstep in EoA. We deploy three sensors in G-Fall, but
only one channel with the highest energy level will be segmented for feature extraction and input
HMM.

5.2 Fall Event Detection

5.2.1 Feature Extraction. We model the fall event by profiling the energy of each compo-
nent in the frequency domain derived from Time-Frequency analysis tool—Short-Time Fourier

Transform (STFT). However, to extract frequencies at multiple resolutions with respect to various
time scales, the most relevant signal processing tool is DWT. Comparing to STFT, the advantages
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of DWT are [45] as follows: (i) DWT performs a nice tradeoff between time and frequency res-
olution, and it groups frequencies that differ by several orders of magnitude into a few levels so
that it can characterize the whole fall event. (ii) DWT reduces the size of the input sample so that
the system can operate in real time. We calculate the energies for eight levels using Daubechies
wavelets (db4) in the order of 6 and extract a 100-dimensional feature vector.

5.2.2 Detection with HMM. Recall that the observation in Section 2, we can infer that a senior
is probably falling when looking at the transition between two states. HMM is a suitable method
to establish a state transition model using time-dependent features. HMM has been successfully
applied in several recognition applications such as speech [40], handwriting, and gesture [2] recog-
nition. It is based on the assumption of a Markov chain: The state of the next moment is determined
only by the current state and does not depend on any state in the past. The probability from the
current hidden state to the next hidden state is defined as transition probability, and the probability
of obtaining each potential observed value based on the current state is called emission probability.
Afterwards, an HMM can be established given an initial state vector. We get the final HMM model
λ = (A,B, Π) by using a small number of fall samples to train the three parameters: transition
probability matrix A, emission probability matrix B, and initial state vector Π. Given an observa-
tion sequence, i.e., the vibration signals, HMM will output a likelihood estimation that can tell how
likely the input is to be a human fall.

Specifically, we estimate the mean vector and covariance matrix corresponding to each state
and the transition probability with the well-known Baum-Welch algorithm [49]. The elements of
transition probability matrix are initialized as 0.5, and the initial state vector is initialized as [1, 0,
0, 0, 0, 0, 0]. The number of hidden states is empirically set to 7 by iterating through a different
number of states from 2 to 10, and we select the optimal one based on the results from the leave-
one-user-out cross-validation. Note that the hidden states in HMM are abstract parameters that
do not relate to the body state directly.

5.3 EoA Reconfirmation with Energy-of-Arrival

5.3.1 Why EoA?. To eliminate the obtrusive false alarm, we propose a straightforward yet ef-
fective idea that we can reconfirm the existence of a risky fall event with the assistance of indoor
positioning. When a risky fall event occurs, in an ordinary situation, the elderly lose their ability
to make any further movement to a new location. Therefore, if a series of movement activities are
captured using an indoor positioning algorithm after a potential fall event is detected, then we can
intuitively consider it a false alarm and clear the warning automatically without the intervention
of humans. This makes the system practical and user friendly. Note that detecting any vibration
signals is not a necessary hint to clear the alarm, because the fallen elder might stay conscious and
struggle in situ, causing vibration on the floor.

Previous works [10, 30] realized decimeter-scale indoor multilateration with three geophones
using TDoA algorithm. Estimating accurate time difference is essential for good positioning per-
formance when using TDoA [11], but this requires more complex hardware to provide high sample
frequency and thus increase the computation overhead. Furthermore, the dispersion nature of floor
vibration during propagation resulting in different frequency components of wave travel at differ-
ent velocities [14, 38]. As a result, the estimated propagation velocity of vibration signals varies
largely, making an unacceptable shift for located points when using TDoA.

Thus, we come up with a novel algorithm EoA, which can realize fine-grained positioning at a
low sample rate without the estimation of the time difference and propagation velocity.

5.3.2 EoA Model and Principle. The key innovation of G-Fall lies in reducing false alarm rate
to zero using EoA mechanism with low sample frequency. The illustration of a multilateration
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Fig. 6. An illustration of

EoA positioning.

Fig. 7. An illustration of contin-

uous walk for three steps.

Fig. 8. Anti-static floor version prototype

of G-Fall.

using three geophones is shown in Figure 6. Specifically, during the horizontal propagation of a
footstep-induced vibration, the signals will suffer attenuation, and the model can be described as
[7, 23]

Amp2 = Amp1

(
r1

r2

)n

e−α (r2−r1 ), (1)

whereAmp1 andAmp2 are the amplitude at propagation distance r1 and r2 from a vibration source,
n and α are the damping coefficient, and the attenuation coefficient depends on the propagation
media. The impact-induced vibration is dominated by the surface wave [3–5], and the damping
coefficient n can be regarded as 0 [6]. Then, we can simplify the attenuation model as

Amp (d ) = Amp0e
−α×d , (2)

whereAmp0 is the initial amplitude of vibration source and d is the propagation distance. Now, the
amplitudes of arrival for three geophones at certain distances d1, d2, d3 respectively are

A(d1) = Amp0e
−α×d1

B (d2) = Amp0e
−α×d2

C (d3) = Amp0e
−α×d3 .

(3)

We then can calculate the energy of arrival for the attenuated vibration signals from the read-
ing of three geophone sensors. By dividing any pair of energy recorded by geophone, the initial
amplitude of signals will be canceled out:

EAB =
A2 (d1)

B2 (d2)
=

(
Amp0e

−α×d1

Amp0e−α×d2

)2

= e−2α×(d1−d2 ), (4)

where EAB is the ratio of energy of arrival from geophone A to that from geophone B.
Given signals from a coordinate-known point, we can calculate EAB , d1, and d2. Then we can

estimate an attenuation coefficientα of the floor from Equation (4). Afterwards, given any vibration
signals generated from an unknown location, we have the following relationship based on the
energy of arrival:

d1 − d2 =
lnEAB

−2α
= 2a1, (5)

d1 − d3 =
lnEAC

−2α
= 2a2, (6)

where a1 and a2 are the semi-major axis of two different hyperbolas, respectively.
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Fig. 9. Concrete floor version proto-

type of G-Fall.

Fig. 10. The amplification circuit of the concrete floor

version.

From Equation (5), we find that the unknown point D(x,y) is a moving point that the difference
of the distances from two fixed points is a constant, which means the trajectory of D(x,y) is one side
of a hyperbola. And the intersection of another hyperbola is the estimation of vibration source.

5.3.3 Detection of Moving Signs. To illustrate the basic idea, we depict a continuous walk of
three steps with stride length of L cm in Figure 7. Given that the estimated coordinate of a fall
position is P0 (n0,m0) and that of next three steps is P1 (n1,m1), P2 (n2,m2), P3 (n3,m3), respectively,
we acquire a distance metric Dis to measure a movement,

Dis =
3∑

i=1

√
(ni − n0)2 + (mi −m0)2. (7)

The stride length varies from 40 to 80 cm for elderly subjects aged over 60 [18]. Assuming the
80% estimation error of EoA is below E cm, we can easily define a threshold. The threshold is hard
to reach if a potential fall event is detected and the fallen subject struggles in situ. G-Fall regards
the potential fall event as a real and fatal one and sends a warning message if the threshold is not
exceeded in a pre-set time. But once it is overpassed, we consider whether further movement of a
human occurs, and the potential fall event is a false alarm.

6 IMPLEMENTATION

As shown in Figure 8, we implement the first version prototype, which is suitable for an anti-static
floor with a Raspberry Pi 3 controller and a 10-bit Analog to Digital Converter (ADC) MCP3008.
Three geophones (LGT-4.5) [4] are connected to the controller through a cable for the collection
of vibration signals. The received vibration signals are amplified by TDA2030A amplifier. We used
the setClockDivider SPI of BCM2835 Library [28] with C to fix the sampling rate as 1,190 Hz. To
set up a real-time system, we transmitted signals to a conventional desktop computer by a PL2303
USB to Transistor-transistor logic Converter Adapter Module via WiringPi Library with C. The
data are then analyzed in the MATLAB platform. The recognition result of each vibration sample
will be reported immediately without noticeable latency.

However, the first version prototype cannot apply to the concrete floor. The detection sensitivity
is not high enough, and the signal-to-noise ratio is extremely low even if we cause a huge impact
around the geophone sensor. Thus, we design a second version prototype for the concrete floor
scenario. The PCB is equipped with an STM32L476RGT6 microcontroller unit (MCU). This MCU
is an ultra-low-power microcontroller based on the high-performance Arm Cortex-M4 32-bit RISC
core operating at a frequency of up to 80 MHz. The analog vibration signals are converted to digital
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Fig. 11. A 8.0 × 6.0 m lab room with an anti-static

floor.
Fig. 12. A 8.5∗6.6 m meeting room with a concrete

floor.

signals by the 16-bit ADC AD7606. The sampling rate is 3 kHz for each channel. The amplification
circuit design is shown in Figure 10. The PCB needs a 12-V power source in exchange for higher
amplification gain and sensitivity. We integrated the most typical yet cost-effective Wi-Fi MCU
ESP8266 for signal transmission to the server end, which is responsible for further computation. A
simple energy-based signal detection scheme is implemented to save power consumption. When
there is no effective vibration signal, the PCB will stay in low-power mode. When the energy
threshold is exceeded, it starts to transmit the vibration signals through Wi-Fi TCP protocol. The
power consumption at transmission mode is around 1.5 W.

7 EVALUATION

This section will present experimental settings of G-Fall first, followed by the results for detecting
a human fall event under different setting and verifying the effectiveness of EoA mechanism.

7.1 Experimental Setup

We evaluate our system in two scenarios. The first experiment environment is a typical 8 × 6 m
laboratory with an anti-static floor. Three geophone sensors cover an area of 3×4.8 m as shown in
Figure 11. There is no furniture blocking between the sensors. The second experiment environment
is a 8.5 × 6.6-m meeting room with a concrete floor, as shown in Figure 12. Three geophones are
deployed in the corner of the room. Some chairs and tables are in the middle of the room, blocking
the sensors.

For the anti-static floor, we recruited 12 participants (2 of them are female) whose height, weight,
and age are in the range of 156–182 cm, 48–68 kg, and 19–29, respectively. For the concrete floor,
we recruit another 12 participants (3 of them are female) whose height, weight, and age are in the
range of 160–185 cm, 43–81 kg, and 18–26, respectively. The height and weight of the participants
is plotted in Figure 13. To form the main dataset, the participants are asked to perform the actions
described in Table 1, each for 25 times. They are required to perform trips and slips depicted in
Figures 1 and 2 as real as possible. Note that we do not collect slip samples on the concrete floor,
because the signal-noise-ratio (SNR) is too low. In total, we collect 5,400 responses ((10 actions+
2 walks×4 steps )×25 times×12 subjects) for the anti-static floor and 4,500 responses ((7 actions+
2 walks × 4 steps ) × 25 times × 12 subjects) for the concrete floor. We give a 2-minute warm-up
period to the participants for practicing the required actions. As for objects, we drop a 400-ml
bottle of water, a 400-page book, and a 2.5-kg chair, each for 25 times, respectively, generating
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Fig. 13. The height and weight of partici-

pants.

Fig. 14. The baseline performance of G-Fall with one per-

son in the training set.

Table 1. Description of Actions for the Data Collection

Standard Fall Loc. Other Actions Loc.

Trip forward A Sit A
Trip forward B Mark time Heavily A
Trip forward C Fall forward from a chair A
Slip backward A Trip forward-Hold on a chair A
Slip backward B Walk normally along the track Track
Slip backward C Walk heavily along the track Track

75 responses (25 times × 3 objects). All the data are collected and saved for off-line analysis with
G-Fall system running in real time. Each experiment is repeated 10 times to get the average results.
Note that all the participants are required to wear protective gear when falling, and a cushion is
also used when performing slips to protect their hip bones. The whole process of falling brings no
harm to the subjects. All the experiments involving human subjects have been approved by the
Institutional Review Board at our university.

Metrics: We introduce two metrics to analyze the performance of G-Fall, namely detection
precision (Precesion) and false alarm rate (Pf ls ). The definitions are shown as follows. Note that
other events refer to all the non-human fall events,

Precision =
# o f truly classi f ied samples

# o f samples
, (8)

Pf ls =
# o f wronдly detected f all

# o f other events
. (9)

7.2 Detection Accuracy

7.2.1 Baseline Performance. We first perform a baseline test for detecting fall events with only
one person in the training set. Specifically, all the fall samples in location A of each participant are
used to train the HMM in turn before testing with the rest of the samples. The detailed statistics
are depicted in Figure 14. For the anti-static floor, with only one person in the training set, 495.45
of 550 human falls are correctly detected, yielding a precision of 90.08% with the false alarm rate
at 12.30% on average. For the concrete floor, 253.96 of 275 trip samples are detected as human falls.
The average precision and false alarm rate are 92.35% and 11.29%, respectively. We mark these
results as the baseline performance of G-Fall.

We notice that the majority of false alarms are composed of “heavy actions” like marking time
and walking heavily. However, the other results show that our system is relatively robust, that is,
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Fig. 15. Comparison of different classifiers with one person in the training set.

it will not register the normal daily activities as human falls. The uniqueness of a human fall is
mainly denoted by the transition state mentioned in Section 3. The process of a human fall that
we decompose has two parts of body contact with the floor, which can also be considered as two
objects falling successively during a short time. This happens uncommonly and makes the human
fall distinguishable from other events.

7.2.2 Comparison of Classification Algorithms. In this experiment, we compare the perfor-
mance of HMM with other machine learning algorithms. Specifically, we select several classical
classifier, namely, K-Nearest Neighbor [13], Support Vector Machine (SVM) [6], Back Propaga-

tion Neural Network (BPNN) [21], and Long Short-Term Memory (LSTM) [15]. For the first
two classifiers, we calculate the Euclidean distance of samples (i.e., their DWT features) as the sim-
ilarity metric. The kernel function of the SVM is the Radial Basis Function. BPNN and LSTM have
one hidden layer with 128 hidden nodes. The learning rate is 0.05. The grid search optimization al-
gorithm is applied to tune the hyper-parameters. The input features and the output are consistent
with HMM model. The comparison regarding precision and false alarm rate are shown in Figure 15.
The results show that HMM does present better performance when applying DWT, which extracts
the time-dependent features from the vibration profile of a human fall. We can see that the LSTM
network, which is also well known for characterizing sequential data, yield a poor detection per-
formance. LSTM network surpasses HMM and then dominates the natural language processing
field for decades, but it seems that the small dataset in our case results in an unacceptably inferior
network.

7.2.3 Impact of Training Set Size. Since G-Fall characterizes the general fall event through a
user-independent HMM template, we need to train the template as best as possible before practical
use. Intuitively, the detection performance of our system can be improved by enlarging the training
set size. To verify this hypothesis, we evaluate the performance by increasing the number of people
in training set from 1 to 7. In Figure 16(a), we can see that the detection precision rises upward
monotonically from 90.08% to 95.74% with an increase in the number of training people. The false
alarm rate drop at the same time to the minimum of 5.30% with a seven-person-trained HMM.
Overall, the system performance on the concrete floor is slightly better. The precision increases
from 92.35% to 97.36%, while the false alarm rate decreases from 11.29% to 4.76% when the number
of training people is equal to seven. This indicates that G-Fall will have a better performance if we
increase the initial training sets by including more people’s fall samples.

7.2.4 Impact of Different Locations. As a user-independent fall detection system, G-Fall should
function properly and detect a human fall event at any location even though it depends on a
template trained by the samples collected from a specific location. For example, if we build a
template using the fall samples collected at location A, then the system should detect a fall at
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Fig. 16. Impact of training set size.

location B or C. To validate this hypothesis, we trained the HMM in turn with samples of each
subject at location A and then tested it using the remaining fall samples collected at B and C. The
results are shown in Figure 18, and, compared to the baseline, the precision suffers no degradation
when testing with the samples from other locations. This verifies that G-Fall can detect human
fall at anywhere even if we train the template with the human fall samples collected from only
one specific location.

Figure 17(a)–(c) plots the vibration waveforms collected from different falling location and its
corresponding DWT. From these figures, we observe that the DWT features that G-Fall extract
follows similar energy transition pattern (i.e., “high-low-high” ), even though the vibration wave-
forms vary from each other.

7.2.5 Impact of Non-standard Fall. We select two typical fall modes, trip and slip, as a standard
to represent the majority of the fall event. However, there is a great variety of posture when users
fall in practical. To study the impact when people perform non-standard falls, we ask our partici-
pants to fall from a 45-cm-heigh chair (Fchair @A) and fall with their hands held on the chair at the
end of the fall (Hchair @A), each for 25 times. The collected non-standard samples are used to test
a one-person-trained HMM. In Figure 18, we can see that the system performance suffers nearly
no degradation when testing with non-standard fall samples. The result indicates that G-Fall can
detect a certain falling pattern with HMM as classifier even when some posture variation of fall
occurs. We think this is because the signals of floor vibration suffer less influence from complex
human motions comparing to those fall detection systems that capture the human motions using
accelerometer or gyroscope.

7.3 Effectiveness of Energy-of-Arrival

7.3.1 Accuracy of EoA. To realize positioning with TDoA and EoA, we first use three coordinate-
known points to estimate the wave velocity v0 and the attenuation coefficient α . Specifically, we
induce vibration on known points 10 times and estimate the mean time delay Δt based on the
received signals of two sensor. The distance difference from one known position to two sensor is Δd .
Thenv0 is calculated as Δt/Δd , while α is calculated using Equation (4). The anti-static floor yields
v0 of 220 m/s and α of 0.2961, while the concrete floor givesv0 of 262 m/s and α of 0.3722. Then we
select the other six points as ground truth, estimating the coordinate for 20 times each using TDoA
and EoA, respectively. Figure 19 shows the results of positioning performance for different sample
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Fig. 17. DWT of time series for human fall at different location with regard to the same geophone.

Fig. 18. Impact of different loca-

tions and nonstandard fall.

Fig. 19. The positioning error of TDoA and EoA with different sam-

ple rate.

rate and methods. EoA achieves nearly the same performance as TDoA with high sample rate at
65 kHz, and there is an 80% possibility where the positioning error goes below 20 cm. However,
EoA outperforms TDoA when the sample rate drops to a low level (i.e., 1,190 Hz and 3 kHz).

This is because the estimation of time difference become inaccurate under the situation of low
sample rate, leading to a considerable shift from the ground truth, while the estimation of energy
requiring low temporal resolution and suffer no obvious degradation under the same situation.
Moreover, the TDoA-based positioning system using geophones is based on the assumption that
the wave propagates velocity is stable. However, in fact, during propagation, the velocity varies
a lot in a different direction because of the dispersion nature [14, 38]. Therefore, the inaccurate
estimation of time difference has a more significant impact on the positioning accuracy comparing
to EoA whose assumption is that the attenuation coefficient of a specific media will not change.

7.3.2 After Reconfirmation with EoA. When a false alarm occurs, we assume that the elders
will keep walking to clear the unsent alarm. Hence, we use the continuous four-step samples
mentioned in the experimental setup to test the EoA reconfirmation module of G-Fall. So we can
see from Figure 16 that when the EoA reconfirmation is turn on, the false alarm rate declined
sharply to almost zero. However, indeed, the false alarm might still occur in some special case, but
the results do verify the effectiveness of the EoA mechanism for reducing the false alarm rate.

7.4 Effective Sensing Range

In this experiment, we study the effective sensing range of G-Fall. Without loss of generality, we
ask one of the participant whose height and weight is 180 cm and 65 kg to fall forward on the
concrete floor. The distance between the falling position and sensor increases from 2 m to 10 m
at a step size of 2 m. The participant falls forward 10 times at each position. We also collect the
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Fig. 20. The SNR of human fall vibration signals under different distances.

samples when there is a wall blocking in between. The SNR values of the collected raw vibration
signals are shown in Figure 20. We can observe that the SNR decreases as the distance increases. In
addition, the occlusion of the wall will reduce the SNR by about a half. With an effective sensing
radius of 10 m, it is easy for G-Fall to cover the whole area of a typical family.

7.5 Through Wall Recognition

Through the previous experiment, we learned the effective sensing range of G-Fall by measuring
the SNR. However, we do not give the exact recognition accuracy. Thus, in this experiment, we
deploy our system in the corner of a new office room (denoted as RC , concrete floor). We trained
a seven-person HMM template model with samples collected in the meeting room (denoted as RB ,
see Figure 12) but test with newly collected samples. The data collection setting is the same as the
previous experiment, while the through-wall samples are collected from another office room (RD )
next toRC . The newly collected fall samples fromRC andRD have different SNR levels. The average
recognition accuracy of all locations is 95.7%, which validates the cross-room and through-wall
recognition ability of G-Fall.

7.6 Cross-domain Deployment

Finally, we would like to validate if G-Fall can deploy in the untrained environment with different
floor types. In this experiment, we set the concrete floor as the source domain while the anti-static
floor as the target domain. We first use the target domain samples to test on the seven-person HMM
template trained on source domain samples without using any other techniques. The average ac-
curacy degrades from 97.36% (intra-domain, see Figure 16(b)) to 80.01%. We then apply transfer
learning techniques, namely transfer component analysis [37], to learn some transfer components
that perverse data properties in a new subspace. However, the average accuracy unexpectedly
drops by 5.85% to 75.06%. We speculate that the mapping function distorts the original features
to some extent. Our attempt demonstrates that further exploration and improvement should be
made for low-effort cross-domain deployment of G-Fall.

8 DISCUSSION

8.1 Dataset

One of the main limitations of this work is that the evaluation dataset only comprises young
people’s fall samples. In addition, we only consider two types of fall modes, namely trip and slip.
The realistic fall is hard to be represented by only two modes. It is extremely difficult for researchers
to collect elderly people’s fall samples in the real world. Researchers need to recruit hundreds
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of elderly volunteers for long-term data collection. Only a few test samples can be successfully
collected in the end. Therefore, one future work will be how we can generate a larger dataset based
on only a few realistic samples or how we can simulate the vibration signals regarding different
falling postures. The generated or simulated data can then be used to train a more reliable model
that detects elderly falls accurately.

8.2 Deploy across Different Floor Types

We evaluate our system on the anti-static floor and concrete floor. The anti-static floor provides
good property in detecting vibration signals with high SNR. While on the concrete floor, we have
to customize another device to capture the effective floor vibration. Our pilot study shows that col-
lecting effective vibration signals on the carpet floor is infeasible. Most of the vibration is absorbed
by the soft carpet, and the SNR is extremely low. For the future work, we plan to evaluate our sys-
tem on more types of floor like wooden and tile floors. In addition, one might be thinking whether
we can train a concrete floor HMM template and test with anti-static floor samples. Previous work
[29] proposes to detect indoor occupants across different structures through footstep-induced floor
vibration using transfer learning. We adopt the same transfer learning techniques in our dataset.
However, no significant improvement has been achieved on cross-domain fall recognition. We
think the domain adaption techniques will be helpful, but some other ways to use them should be
tried in the future (e.g., transfer learning using a deep neural network).

8.3 Effective Detection Range

In our hardware setting, the effective detection range for the typical human fall is up to 10 m. It is
sufficient for G-Fall to cover the area of a living room, bathroom, or even the whole house. We can
enlarge the detection range with higher amplification. However, if the vibration source is closer to
the sensor, then the amplitude of the received signals will also be higher. Then the low resolution
of the low-cost ADC unit will bring another limitation, and we have to deploy a more expensive
ADC unit.

8.4 Multi-person Sensing

G-Fall focuses mainly on detecting the fall of an elderly person who lives alone at home. If there is
more than one person in the same sensing area simultaneously, then one should be able to help the
fallen elder. However, what if the other person is a panicked young child when the elder falls? The
child may cause floor vibrations at the same time when the elder falls, leading to a missed detection.
Even if the fall is detected, the child may not know how to ask for help and move around the fallen
elder, resulting in the alarm being cleared. For this case, we plan to apply blind source separation
to separate mixed signals and then identify people by use of separated signals.

9 CONCLUSION

In this article, we propose G-Fall, a positioning-assisted, low-false-alarm, device-free, and user-
independent automatic fall detection system for single-resided elders. G-Fall deploys three geo-
phones on the cornersof a room to receive floor vibration signals. We analyze the floor vibration
induced by the human fall and extract time-dependent features to distinguish a human fall from
other events with a Hidden Markov Model. We prototype two versions of G-Fall, which can de-
tect a fall event in real time on an anti-static floor and a concrete floor. The evaluation results
demonstrate that G-Fall can accurately detect a human fall and has a high potential to be put into
practical use.
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