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Abstract—Nowadays, smart wristbands have become one of the
most prevailing wearable devices as they are small and portable.
However, due to the limited size of the touch screens, smart
wristbands typically have poor interactive experience. There are
a few works appropriating the human body as a surface to extend
the input. Yet by using multiple sensors at high sampling rates,
they are not portable and are energy-consuming in practice. To
break this stalemate, we proposed a portable, cost efficient text-
entry system, termed ViType, which firstly leverages a single
small form factor sensor to achieve a practical user input with
much lower sampling rates. To enhance the input accuracy with
less vibration information introduced by lower sampling rate,
ViType designs a set of novel mechanisms, including an artificial
neural network to process the vibration signals, and a runtime
calibration and adaptation scheme to recover the error due to
temporal instability. Extensive experiments have been conducted
on 30 human subjects. The results demonstrate that ViType is
robust to fight against various confounding factors. The average
recognition accuracy is 94.8% with an initial training sample
size of 20 for each key, which is 1.52 times higher than the state-
of-the-art on-body typing system. Furthermore, when turning on
the runtime calibration and adaptation system to update and
enlarge the training sample size, the accuracy can reach around
98% on average during one month.

I. INTRODUCTION

In the past few years, we have seen the take-off of wearable
wristbands such as Fitbit and Apple iWatch for fitness applica-
tions. People begin to use more applications such as electronic
payment and short message service(SMS) on smart wristbands
instead of mobile phones. The size of smart wristbands have
become smaller and lighter to provide better user experience.
As a result, the touch screens on the wristbands also become
smaller, while human fingers do not shrink accordingly, which
are difficult to support text input.

Currently, to overcome the limitations of a small screen,
speech recognition is one of the methods but is sensitive to
noise levels in the surrounding environments. Moreover, it is
insecure for sensitive information (e.g., password input) since
speech input is easy to be eavesdropped. For the same reason,
it is also intrusive to the people surrounding the user. Recent
works by FingerIO [1] and LLAP [2] achieves millimeter-scale
localization accuracy for fingertip tracking, which enables
users to write letters on ubiquitous surfaces instead of tiny

Fig. 1. A sample example of ViType.

touch screens. However, writing letters is significantly slower
than typing them, which results in poor user experience.

In this paper, we present a novel system termed ViType, as
shown in in Fig. 1, which enables a user to type on the back
of one’s hands (opisthenar) instead of a tiny touch screen of a
smart wristband. We leverage a vibration sensor on a wrist to
collect the vibration signal by tapping in different locations
on the opisthenar. As the signal carries diverse energy at
different frequencies and over different distances, we reap
its benefit as the unique input feature. ViType inherits the
merits of vibration, such as resistance to acoustic noise and
environmental dynamics. Moreover, the size of the opisthenar
is larger than tiny touch screens, which enables the user to
type more quickly and conveniently.

Motivated by this, we have designed a keystroke recognition
system that leverages location-based vibration information
derived from a small piezoelectric ceramic vibration sensor.
The sensor can be easily embedded to a smart wristband.
Although keystroke recognition via body vibration has been
studied in Skinput [3], it takes 10 sensors of an armband with
a very high sampling rate (e.g., 55 kHz) to collect the signal.
On the contrary, as depicted in Fig. 2, ViType only uses a
single small form factor sensor which makes it easier and more
cost effective. Furthermore, it samples at lower sampling rates
(e.g., 600 Hz) to make it more efficient for running on resource
limited smart wristbands.
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It is nontrivial to embrace the above vision, as sampling at
a lower rate produces significantly less vibration information.
Hence, we need to investigate novel methods for keystroke
recognition via body vibrations. Furthermore, in our vision,
ViType should not only attain high accuracy but also be robust
to many practical issues. For example, although ViType is a
location-based training system, users’ wristbands may have
a little displacement while typing over the time. Second,
users may type with different force or different finger/hand
posture. Third, ViType is expected to be functional when users
are walking which may cause vibration noise to the system.
Fourth, it should be convenient for users to train the system
at the time of first usage and then use it successively.

To cope with these challenges, we studied a set of novel
keystroke detection/ classification mechanisms on different
vibration patterns produced by keystrokes on users’ opisthenar.
We find that keystroke recognition scheme via location-based
vibration depends on the vibration amplitude and frequency,
which can be characterized by the waveforms and power
spectral density (PSD). A more important observation is that
the waveforms and PSD of different keystroke locations reveal
highly distinguishable profiles and can be conveniently used
as a location signature. We removed the noise signal caused by
human mobility from the original signal via a filter and then
used an online dual-threshold start point detection algorithm
to detect keystroke signals. In addition, we find that Artificial
neural network (ANN) with a min-max normalization concept
is a suitable technique for vibration classification. A regular-
ization is further employed particularly due to the limited size
of training samples. Last but not the least, we design a run-
time calibration and adaptation system and provide a special
scheme to update and enlarge the training set to enhance the
robustness in practical situations such as variations of finger
posture or displacement of wristbands and tap position.

We implement ViType as a prototype on a Raspberry Pi
with a small form factor piezoelectric ceramic in real time
system [21]. A demonstration video is attached in the link1.
Our baseline evaluation shows that classification accuracy
is 94.8% on average for 30 human subjects with an initial
training sample size of 20 for each key, which is 1.52 times
higher than the state-of-the-art system of Skinput [3]. We have
also conducted a series of studies in realistic settings such
as wristband or tapping displacement, variations of tapping
force, and found that the performance of ViType degrades
significantly in non-ideal circumstances. Thus, we design a
runtime calibration and adaptation scheme to address these
challenges and our results show that the proposed scheme can
mitigate the degradation.

Our contributions in this work lie in the following aspects.
• ViType is the first attempt in the literature to recognize the

keystrokes typing on a user’s opisthenar via a single small
size vibration sensor. It samples at an order of magnitude
lower rates to achieve a more efficient text-input method
on resource limited smart wristbands.

1https://youtu.be/taLZLFyPB4M

Fig. 2. A sample prototype of ViType.

• We president the entire design of ViType, which utilizes
ANN to recognize the keystroke vibrations, and harnesses
a runtime calibration and adaptation scheme to achieve a
desirable recognition accuracy.

• We comprehensively evaluate the performance of ViType
under different scenarios. The recognition accuracy is
94.8%, which is 1.52 times higher than the state-of-the-
art on-body typing system.

The remainder of this paper is structured as follows. In
Section II, we first provide the background information and
the related work in the context of this work. Then, Section III
presents the overview of ViType showing the design goals and
challenges. Section IV describes the three main modules of
ViType. Section V explains the detailed implementation tech-
nique, followed by a comprehensive experimental evaluation
of our system. Finally, Section VI draws a conclusion on this
paper.

II. BACKGROUND AND RELATED WORK

Body vibration: Keystroke recognition via body vibration
has been studied in Skinput [3], in which a signal is collected
from 10 sensors of an armband with a very high sampling
rate (e.g., 55 kHz). When a finger taps on the opisthenar, two
separate forms of vibration are produced, which are transverse
waves and longitudinal waves. Transverse waves translate
along the hand surface while longitudinal waves move into
and out of the bone through soft tissues. Moreover, during
the propagation of vibration from a tapped location to sensor,
the signals suffer attenuation and the model can be stated as
follows [4].

A(d) = A0e
−α×d, (1)

where A0 is the initial amplitude, d is the propagation distance
and α is the attenuation coefficient. The relation in (1) further
reveals that the amplitude of vibration signal is dominated
by the propagation distance and attenuation coefficient. Thus,
vibrations resultant from tapping in different locations of
opisthenar are distinct as they carry the diminishing energy
at different frequencies over different distances. Additionally,
higher frequencies propagate more readily through bone than
through soft tissue, and bone conduction carries energy over
larger distances compared to soft tissue [3]. As for attenuation
coefficient, it is associated with the medium which vibration
signals propagate through, which means it may vary in accor-
dance with different physiological states of the human body
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Fig. 3. Architecture of ViType

over time (Section V-C will discuss the temporal stability of
ViType).

Text input for wearable devices: Speech recognition [5]
is popular for text input. Furthermore, there are also some
acoustic interface-based systems for text input [6][22]. How-
ever, it is sensitive to noise levels in the environments and
insecure for sensitive information such as password input due
to its convenience to be easily eavesdropped. For the same
reason, it is also intrusive to the people around the user. Recent
works by FingerIO [1] and LLAP [2] achieve millimeter-scale
localization accuracy for fingertip tracking, which enables
users to write letters on ubiquitous surfaces instead of tiny
touch screens. However, writing letters is significantly slower
compared to typing, which results in poor user experience.

Some projects require a user to carry extra devices such as
a ring, a pen or even a shoulder-mounted camera for text input
[7-11]. However, they are uncomfortable and cumbersome.
It is also unacceptable for users to implant sensors under
the skin [12] for text input. Camera technique suffers great
controversy in terms of privacy issues and requires line-of-
sight sensing [7]. Although infrared technique has achieved
some simple human-computer interaction designs [13,14], it
is still unsuitable for text input because of power consumption
and accuracy limitation.[23-28]

Vibration sensors: Serendipity [15] leveraged accelerom-
eter and gyroscope to recognize five finger gestures, such
as pinching, tapping, rubbing, squeezing and waving. These
accelerometers and gyroscopes are only used for recognizing
finger gesture, but not adequate for keystrokes as these sensors
are not sensitive to the vibration of finger taps. There are few
works which used piezoelectric vibration sensors to classify
keystrokes [16]. Recently, SurfaceVibe [17] used geophone to
localize taps and swipes for supporting text input on surfaces
such as wood tables. However, these methods used TDOA-
based localization concept which require multiple sensors, and
hence they are not fit for small size wearable wristbands.
VibSense [18] also realizes the goal for typing on external
surfaces such as wood table via vibration, but it generates

vibration on a table by a vibrator while we sense vibration on
body directly generated by finger which is more unstable and
complex to be processed.

III. OVERVIEW OF VITYPE

A. Design goals and challenges:

We design ViType to meet the following goals and overcome
the following challenges which are basically required to use
this system in practice.

1) User friendly: It will result in terrible experience if users
have to reset the input system each time they type. Such time
overhead is not negligible and annoying if the usage duration
is short. Therefore, ViType needs to make sure its temporal
stability that each user has to launch the setup procedure only
once.

2) Availability: The localization mechanism of ViType
should also be designed to fit in different operating conditions.
For instance, users may apply different tapping force and
change their hand posture over time and even need to type
while in the walking phase. Besides, ViType should have a
strong ability of resisting acoustic noise caused from surround-
ing environments.

3) Fine-grained: ViType utilizes the relatively wide area of
the opisthenar as the interactive interface for users to type in.
However, the space between two keys is only around 2 cm. In
order to achieve a centimeter-scale keystroke localization, we
have to realize a localization mechanism that can recognize
keystrokes with high accuracy. In Skinput [3], the accurate
localization on forearm is realized using 10 sensors of an
armband at a very high sampling rate such as 55 kHz.
However, ViType needs to achieve accurate localization on
opisthenar using only one sensor at a low sampling rate such
as 600 Hz.

4) Deviation-tolerant: Marking keyboard layout on the
opisthenar with a pen is inconvenient and the marks on
the hand tend to be erased, which will result in poor user
experience. One of the schemes to perform a virtual keyboard
on a particular interactive surface is projection [13], which can
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visualize the layout of keyboard. However, it is impractical to
project a virtual keyboard on the opisthenar as smart wristband
is energy limited and extra employment of hardware is needed.
Hence, ViType has to attain its localization with high accuracy
in the circumstances that users have no visual keyboard layout
and assistant marker to keep tapping on the same key position
over time. In addition, similar to the deviation of keystrokes,
the shift of a smart wristband over time also needs to be taken
into consideration.

B. System architecture:

The architecture of ViType consists of three major compo-
nents in order to build a robust and self-contained keystroke
localization system for smart wristband. The functionalities of
these components are described in the following.

1) Keystroke detection: ViType employs the piezoelectric
ceramic sensor to convert the vibration signals into recordable
electrical signals which are then denoised using a filter and
segmented by a double threshold-based mechanism.

2) Keystroke localization: Once the vibration signals are
received and detected, ViType utilizes a keystroke localization
algorithm to extract the unique vibration feature (i.e., power
spectrum density) in the frequency domain and fuses it with
amplitude signals as inputs to a trained classifier based on
ANN for the purpose of localization.

3) Runtime calibration and adaptation: ViType takes the
advantage of user’s on-screen feedback to correct accidental
classification errors and this process is called calibration. Fur-
thermore, it adopts a runtime adaptation algorithm to update
and enlarge the training set to maintain the high accuracy of
classification.

Fig. 3 describe the work-flow of ViType system. In the
initial training stage, the vibration signals of keystrokes are
sensed, denoised and segmented by the detection mechanism.
Afterwards, the localization algorithm extracts the feature and
builds the ANN model. When a new keystroke is detected,
the localization algorithm finds the best match in the trained
model and then output the resulting number on the screen
along with candidate keys which can be calibrated by the
user. The feedback of calibration is transmitted to the runtime
adaptation algorithm to update the training set.

IV. VITYPE

A. Keystroke Detection

1) Sensing: There are inertial measurement units (IMU)
in the COTS wearable wristbands which are able to detect
vibration. However, they are engineered for very different
applications such as motion tracking rather than measuring
acoustic signals propagated through the human body. Conse-
quently, they are unfit in many crucial ways [3]. Piezoelectric
ceramic sensor uses the piezoelectric effect to measure the
vibration intensity by converting it to an electrical charge. In
a piezoelectric ceramic device, mechanical stress, instead of
externally applied voltage, causes the charge separation in the
individual atoms of a material. Thus, the vibration caused by
finger taps is able to be converted to an electrical charge. Fig.
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Fig. 4. Sample amplitude and PSD of key 1 and key 5.

2 shows a sample piezoelectric ceramic sensor whose external
diameter is 20 mm and thickness is only 0.4 mm (FT-20T-
6.5A1). The small form factor of the sensor makes it easy to
be embedded to a smart wristband as a chassis.

2) Denoising: Unlike a microphone-based acoustic system,
ViType is capable of resisting environmental noise using the
vibration signal. Therefore, ViType has a low level of noise
naturally. At first, we used a 20 Hz Butterworth high pass filter
to remove the low frequency noise caused by the direct current
component and the human mobility (less than 5 Hz). Second,
we set the cut-off frequency to 300 Hz of a Butterworth low
pass filter since the vibration signal tapped on the opisthenar is
realized in low frequencies (less than 200 Hz) domain. Then,
the noise in the higher frequency domain can be removed as
well.

3) Segmentation: We use energy-based double threshold
approach to detect the start point of a keystroke [19]. The
lower threshold is µ+σ and the higher one is µ+3σ, where µ
and σ are the mean and standard deviation of energy obtained
from collected signals, respectively. The lower one is very
sensitive to the variation of signal and can easily be broken,
whereas the higher one will not. Exceeding lower threshold
level is not necessary to detect the start point as there might
be some noise whose energy is higher than it. Only when
the high threshold is overpassed, the low threshold can be
considered as the start point of the signal to be detected. In
terms of the end point, we set it at 0.1 s after the start point
as the duration of a keystroke signal is usually around it.

B. Keystroke Localization
1) Feature Selection: The attenuation model of vibration

signals, as stated by the relation in (1), provides us a hint
of using raw data of amplitude as location signature and
Fig. 4 shows the distinguishable vibration signals collected
from key ”1” and key ”5”. Furthermore, the signals also
carry diminishing energy at different frequencies over different
distances, and thus we investigate the profile pattern of key
”1” and key ”5” in frequency domain. Specifically, we choose
PSD of the collected vibration signals, which reveals the
power distribution in different frequency. If ki is the received
vibrations signals, then the PSD can be defined as

PSDi = 10 log10
(abs(FFT (ki))

2

fs × n
, (2)

where FFT (·) is the fast Fourier transform operation, fs
is the sampling rate, and n is the number of samples of
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received signal ki. Fig. 4 shows that the PSD features of
two keys have different profile, which exhibits distinct values
across frequencies. This give us another justification for using
PSD to locate the keystrokes. Therefore, we decide to extract
amplitude and PSD from raw signal and fuse them together
as the inputs to estimate the classification model in ViType
system. Note that the profile of each key shows the distinction
but we only present the profiles of 2 keys for the brevity of
image expression.

2) Classification Algorithm: An ANN is a computing sys-
tem inspired by the biological neural networks that constitute
animal brains. The back-propagation (BP) algorithm is one of
the well known methods of ANN. In addition, unlike Deep
Learning methods which have heavy computational require-
ment, BP ANN is suitable to apply in the smart wristband
that has limited resource for computation. BP ANN is based
on gradient descent method which minimizes the sum of
the squared errors between the actual and the desired output
values. The basic formula of BP algorithm [20] is

W (n) = W (n− 1)−∆W (n), (3)

where

∆W (n) = η
∂E

∂W
(n− 1) + α∆W (n− 1), (4)

where W, η, E, and α ∆ W(n-1) are weight, learning rate,
gradient of error function, weight incremental quantity, respec-
tively.

Since we apply gradient descent method to find the optimal
solution, it is necessary to normalize the data. Otherwise, it is
difficult to converge. Moreover, after the normalization, the
speed of finding optimal solution increases and hence the
classification accuracy increases as well. Thus, we employ
the min-max normalization concept shown in (5) to linearly
transform the raw data x and make the resulting values to be
within [0,1].

x′ =
x−min(x)

max(x)−min(x)
. (5)

One of the missions of BP ANN when finding the optimal
model is to minimize the loss function. Since the keystroke
recognition is a classification problem, thus we choose the
typical cross-entropy loss function to train the BP ANN.

Loss = − 1

N

N∑
i=1

yi log ŷi − (1− yi) log(1− ŷi) (6)

where N is the number of input, yi is the ground truth and
ŷi is the predicted output.

However, when the training set is limited like that in ViType
(maximum of 70 for each key), finding minimum of L(w) is
not the best scheme because of the over-fitting phenomenon.
Therefore, to avoid the over-fitting phenomenon and improve
generalization, we add a penalty term λ

2 ||w||
2 to L(w), which

is termed as regularization. Thus, the new loss function after
regularization is

Loss′ = Loss+
λ

2
||w||2 (7)
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Fig. 5. Classification accuracy of three feature subsets.

The penalty term λ
2 ||w||

2 consists of the mean of the sum
of squares of the network weights and biases.

In the application scenario of ViType, when a user wears
our wristband for the first time, a short initial phase (tapping
each key 20 times within 3 minutes) is needed for training an
ANN model. After the training, each time the user wears the
wristband, the previously learned model is used to recognize
the keystrokes.

C. Runtime Calibration and Adaptation

ViType designs a runtime calibration and adaptation system
to adapt itself to the deviation of wristband and keystrokes,
and keeps the training data as new as possible to achieve better
localization accuracy. As for calibration, for each keystroke,
besides the output which is given by the classification algo-
rithm, ViType also displays other top 2 candidate keys. A user
can click any candidate key if it is the actual intended key
when the algorithm gives a wrong output on the touch screen.
If there is no intended key contained in the candidate list, the
user will require to turn to the built-in on-screen keyboard.

In terms of practical usage, there are three cases: (1) a user
does not select the candidate key and ViType will deem the
localization output as correct, (2) a user selects any candidate
key, which means that the system gives a wrong output and
ViType maps the current input signal with candidate key rather
than the wrong output, (3) a user taps the ”Delete” button
and it is not necessarily a hint for localization error as it
may be the user’s own input error. Therefore, for adaptation,
we have designed a special scheme to update the training
set. For case 1, the input sample will be added only once
into the queue corresponding to the correct output. For case
2, the input sample will be added tk times into the queue
corresponding to the selected candidate key. Note that tk is
defined as consecutive error times of key k and varies from
1 to 4. For instance, if the system gives wrong output of key
k consecutively for 3 times, the value of tk will be equal to
3. If the wrong output of key k occurs consecutively more
than 4 times, the maximum of tk will be 4. Once the system
produces the intended output for key k, tk is reset to 1. We
define the number of sample in queue of key k as Qk. Then
we have the total number of samples in all queues:
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Fig. 6. Confusion matrix of 9 keys using amplitude
& PSD as features.
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Fig. 7. Comparison of classification accuracy be-
tween ViType and Skinput.
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Fig. 8. Impact of initial training set size for ViType
and Skinput.

N =

9∑
k=1

Qk. (8)

Once N is larger than 20, the samples in all queues will
be popped into the training set and the ANN model is trained
again. Note that the oldest samples leave the corresponding
queue if the training set sizes reach the maximum of 70 for
each key.

V. IMPLEMENTATION & EVALUATION
Implementation: In this prototype, we implemented Vi-

Type using a piezoelectric ceramic sensor and an amplifier
connected to a Raspberry Pi controller via an Analog to
Digital Converter (ADC). The Body vibrations are collected
via BCM2835 Library with C. Then, we transmit them to
a conventional desktop computer by a PL2303 USB To
Transistor-transistor logic (TTL) Converter Adapter Module.
It is implemented via WiringPi Library with C.

As for the keystroke recognition, the signal denoising,
keystroke detection and BP ANN are implemented in Matlab
toolbox. Note that we set the number of hidden layers to 1
and the number of hidden nodes to 140 and the learning rate
to 0.1 for BP ANN.

Experimental Setup: We recruited 30 participants (20 of
them are male) who are in the age range of [19 − 24] and
stand for the crowd that are most likely to use our system.
Besides, their body mass indexes (BMIs) range from 17.26
(lean) to 29.38 (obese). Note that all the experiments involving
human subjects conformed to the relevant regulations of our
university.

The evaluation experiments are launched in a conventional
office environment. At the beginning of the experiments, the
instructor marked the location of each key using a marker. This
is because the participants may not realize the fact that tapping
a bony area produces more stable vibration signal compared
to the case when fleshy area of the back of one’s hand
is tapped [3]. Moreover, participants are given a 10-minute
warm-up period to become familiar with our system before
the experiments. In all experiments, we adopt the following
default setting unless explicitly specified. The participants are
instructed to tap 30 times on each key in an orderly fashion
(270 examples for each person, 8100 data points in total).
For example, we ask the participants to tap on key 1 for 30
times, then key 2 for 30 times, and so on. We then apply

10-fold cross-validation method to initialize the BP ANN
learning scheme to estimate the mathematical model. Note
that the calibration and adaptation scheme is turned on for
the experiments in Section V-C only.

A. Accuracy of ViType

In this section, we first verify the suitability of the features
we used by comparing three other feature subsets. Then, we
validate the accuracy of ViType in terms of the keystrokes de-
tection and keystrokes classification. Afterwards, we evaluate
the accuracy comparing with the existed work Skinput [3].
We end this section with the discussion about the impact of
training sets of different sizes on the keystrokes recognition
accuracy.

1) Effect of feature subset: We have got two potential
features for classification in Section IV-B, and hence we obtain
three different feature subsets, which are (1) only amplitude,
(2) only PSD, (3) fusion of amplitude and PSD. In this
experiment, we investigate the classification accuracy with
respect to different features mentioned above using BP ANN.
As shown in Fig. 5, the feature set (3) obtains the highest
average accuracy at 94.8%, followed by (1) at 92.7% and (2) at
88.3%, respectively. The amplitude of each keystroke reflects
the attenuation information in time domain while the PSD
reflects it in the frequency domain. Consequently, the fusion
of these two features complements each other and improves
the classification performance.

2) Baseline detection and localization: We perform the
experiment of keystroke localization following the setting
discussed above. After collecting the data, we obtain the
results with 0% mis-detection and 0% flase-alarm. In terms
of localization, Fig. 6 plots the resulting confusion matrix
of localization accuracy for 30 participants, showing that the
average classification accuracy is 94.8%.

3) Comparison with Skinput: Here, we compare the perfor-
mance of ViType to the state-of-the-art approach Skinput, in
which signals are collected from 10 piezo films of an armband
at a very high sampling rate. Whereas, ViType uses a sensor
with small size for making it easier and more cost effective to
be embedded on smart wristbands. Moreover, ViType samples
at an order-of-magnitude lower rates that makes it more
efficient to run on resource limited smart wristbands. In this
experiment, we input the extracted features adopted in Skinput
of the same raw data into a SVM classifier (used in Skinput as
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Fig. 9. Positional variation of
wristband.

Fig. 10. Positional variation of
taps.

well). Fig. 7 demonstrates how ViType outperforms Skinput.
Comparing the red line with the blue line, we observe that
Skinput obtains an average accuracy of 61.6%, while ViType
can obtain an average accuracy of 94.8%. In other words,
ViType can obtain an approximate 1.52 times higher average
classification accuracy compared to Skinput. Furthermore,
ViType has a relatively steady accuracy among different users
while the accuracy of Skinput has a large differences among
people and the standard deviation of accuracy are 0.032 and
0.124 for ViType and Skinput, respectively. We note that the
worst case of ViType outperforms the best case of Skinput.

4) Impact of training set size: Intuitively, the classification
accuracy of our system can be enhanced by enlarging the size
of the training set. This is due to the fact that it is rather
difficult for ViType users to tap exactly on the same point
for each key without any deviation. To verify this hypothesis,
8 participants are asked to tap 80 times per key in order to
produce a training set. We calculate the accuracy with respect
to different size of training set (from 5 to 70) for both ViType
and Skinput and plot Fig. 8.

We can observe evidently that the classification accuracy
rises upward monotonically with the increasing size of the
training set for both ViType and Skinput. However, the accu-
racy of ViType increases faster than that of Skinput when the
size of training samples rises from 5 to 20 (at about 80% and
94%, respectively), while the accuracy of Skinput is below
60% in this range. This implies that ViType has a better user
experience as we may ask a user to tap 20 times for each key
only to initialize the training sets, the duration of which is
within 3 minutes. ViType has the calibration and adaptation
scheme. Hence, as a user types every day, its training set grows
continuously (e.g., even 70 for each key), which means that
the accuracy of ViType can approach nearly 98% (see Section
V-C for more details).

B. Robustness of ViType

In this section, we focus on the robustness of the system and
employ our system under several different conditions. Note
that we did not turn on runtime calibration and adaptation
feature of ViType in these experiments. The issues, in which
we are concerned, are stated as follows.

• Positional variation of wristbands
• Positional deviation of tap
• Difference tap force
• Mobility
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Fig. 11. (a) Accuracy of positional variation of wristband. (b) Accuracy of
positional variation of taps. (c) Impact of different force taps. (d) Impact of
tapping while in the walking phase.

1) Positional variation of wristbands: The key insight of
ViType is the distinctive vibration signal produced by tapping
on different locations on the opisthenar which requires to
fix the position of the wristband. However, there is quite
a common scenario that the wristbands user wearing shifts
from original location to others over the time of usage. In
this experiment, we assume that the original position of the
sensor is point P1. We then have points P2, P3 and P4
by shifting 1 cm towards the elbow gradually (Fig. 9). We
change the location of the sensor from P1 to P4 and ask 8
participants to consecutively tap on each key for 30 times.
In Fig. 11(a), the X-axis is the format of “training data-test
data”. For example, “1-2” indicates that we train the classifier
with 20 samples collected on P1 and test the system with
10 samples collected on P2. Particularly, “12-12” means that
we train the classifier with 20 samples from P1 and P2,
respectively (40 training samples in total), and test the system
with the remaining 10 samples from P1 and P2, respectively.
We have 2 observations in the context of this experiment:
(i) using the samples collected from the same location for
the test purpose (e.g., 1-1) can achieve much higher accuracy
comparing with 1-2, 1-3, 1-4 cases. (ii) initializing the system
from the samples collected from different points (e.g., 12-12,
14-14) can mitigate the impact of wristband displacement.
Consequently, it provides us a hint of designing a runtime
adaptation scheme to update the training set (see Section V-C
for the details).

2) Positional deviation of tap: Even for tapping on the same
key, the slight deviation of each tap occurs all the time. To
investigate the impact on the performance of deviation of taps,
we ask 8 participants to consecutively tap on each key for 30
times as well as the deviation key which are illustrated in
Fig. 10 (with 0.5 cm interval from the center of key in four
directions, namely over (O), below (B), left (L) and right (R)).
In Fig. 11(b), similar to Fig. 11(a), the X-axis is also the format
of “training data-test data”. For instance, C-O indicates that
we train the classifier with 20 samples collected on center and
test the system with 20 samples collected on the over location.
Particularly, “A-A” means that we train the classifier via 100
samples collected from every point (20 from each location)
and test the system with the rest of 50 samples (10 from
each location). The histogram shows that when the training set
and the test set are from different locations, the localization
accuracy suffers a great drop to less than 60%. However, the
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accuracy of the “A-A” case recovers to around 83%, which
means that ViType has the resilience to tapping deviation when
the training set is associated with the tapping deviation.

3) Force of Tap: The resultant vibration signal may be dif-
ferent when users apply different tapping force, which results
in localization errors. To examine the impact of tapping force,
we conduct this experiment in which we ask 8 participants to
tap on each key 30 times both gently and heavily, that results in
4,320 responses (9 keys×8 users×30 times×2 ways). Note
that “H” indicates that a user taps heavily while “G” indicates
that a user taps gently. Fig. 11(c) shows the resulting graphics.
Similar to the previous sections, the X-axis stands for “training
force-testing force”. For example, H-G indicates that we train
our classifier with 20 samples collected when participants
tap heavily and test with 10 samples data collected when
participants tap gently. Notably, A-A means that we initialize
the classifier with 20 samples and test with the remaining 10
samples (half gently and half heavily). From the figure, we
discover that the classification accuracy drops to below 40%
when the testing tap force is different from the training tap
force (i.e., G-H and H-G). A different tap force incurs different
characteristics of signals, which leads to lower classification
accuracy. Moreover, while initializing our classifier with both
“heavy” and “gentle” data, the accuracy recovers to the same
level with the accuracy of using the same force (H-H and
G-G).

In reality, users may apply different tap force to make the
training set more approximate to the results in “A-A” model,
which may contain all kinds of tap force in the test phase.

4) Mobility: If users have other physical movements while
they type on ViType, it will probably result in noise interfer-
ence and cause a higher detection error rate. This happens
regularly in our daily life. For example, we may need to
send an important message or chat with someone when we
are in the walking phase. Practically, we cannot avoid noise
interference due to this movement. To investigate how mobility
impacts the classification accuracy, we conduct the following
experiment to study the accuracy of our system while walking
and typing simultaneously. In this experiment, we ask five of
our participants to tap on nine keys 30 times each respectively
when walking, and then apply 10-fold cross-validation tech-
nique to evaluate the accuracy. Note that we did not study
how our system performs when users are jogging since it is
too dangerous to type in this scenario and we strongly advise
the users to avoid typing when jogging. Fig. 11(d) plots the
results of this experiment, which shows the individual accuracy
of every participant. Compared with participants sitting in
an office, ViType still obtains a high accuracy (92.8% on
average). The reason of high accuracy is that the noise caused
by human mobility is at low frequency (less than 5 Hz) and
we remove it via a 20 Hz Butterworth high pass filter.

C. Runtime calibration and adaptation

While using ViType in practice, it is difficult for users to
keep the position of the wristband and keystroke unchanged
while the usage period of time. It is quite unfriendly for users

Fig. 12. Runtime calibration and adaptation scheme helps ViType to restore
its high accuracy after deviation of watch and keystrokes (dotted lines denote
the moment of displacement occurrence).

if they need to reinitialize the system every time they use
ViType. ViType has proved its robustness and indicates that
we can alleviate the deterioration of accuracy by increasing the
training samples collected in different conditions. However, we
still want to achieve better accuracy and provide better user
experience in reality. Hence, we design the calibration and
adaptation system. In the following two experiments, we turn
on the runtime calibration and adaptation scheme.

1) Resilience to displacement: In the first experiment, we
count the localization accuracy averaged over the last 50
keystrokes with respect to the displacement of wristband
and tap position in different levels. The resulting impact on
accuracy is shown in Fig. 12. In terms of the displacement
of the wristband, the localization accuracy drops to around
65% if the wristband is moved from the original position no
matter with a displacement of 1 cm, 2 cm or 3 cm. As for the
displacement of tap position, in the case with the smallest
displacement at 0.5 cm, the accuracy shows no significant
degradation. Whereas in the case with larger displacement of
1 cm and 1.5 cm, the accuracy drops to about 72% and 76%,
respectively. Particularly, when the displacement of wristband
and tap position occur at the same time, the accuracy drops
to around 62%. However, ViType’s calibration and adaptation
scheme can mitigate the impact of these wristband and tap
position displacement and recover the accuracy to above 95%
after a few tens of inputs.

2) Temporal stability: In order to judge this metric, we
conducted experiments 5 times over the interval of 1 hour,
1 day, 2 days, 1 week and 1 month. In each time, we tap
from key “1” to key “9” for 100 rounds (900 keystrokes in
total) while considering the average localization accuracy of
the past 50 keystrokes. We observe that as the size of the
training samples is enlarged, the localization accuracy remains
stable at around 98% each time. This indicates that ViType is
temporally stable over the time.

D. Cost

Firstly, users only need to input 20 × 9 training instances
at the beginning (all 30 subjects finished tapping within 3
minutes of our evaluation). Then, the training duration of BP
ANN is only 0.6 s. Moreover, we measure the latency between
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each tap and ViType outputs (i.e., the localization result) on
the screen. The results show that the classification latency
is around 0.2 s, which is well below the human response
time. Therefore, there is no lagging effect when users use
ViType. Furthermore, ViType with a low sampling rate (e.g.,
600Hz) is significantly more efficient to run on energy-limited
smart wristbands compared with state-of-art approach Skinput.
When it comes to the case of hardware expense, since we only
employ one piezoelectric ceramic (at 0.15 dollar ) and one
amplifier (at 0.45 dollar), it is not expensive for a manufacturer
to embed ViType on a smart watch.

VI. CONCLUSION

This paper presents a novel text input system for wristbands
assuming the back of one’s hand as a virtual keyboard. Body
vibration is detected by a small sensor embedded to the
wristbands at a lower sampling rate, and then classified by BP
ANN to support text input. ViType achieves high keystrokes
recognition accuracy and is also robust under several realistic
text input conditions such as tapping with a different force,
typing when walking and so on. The result demonstrates that
a neural network works well for classifying body vibration,
and ViType is more accurate and robust with more training
samples collected under different conditions and the update of
a training set can be done by the calibration and adaptation
feature of ViType.
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