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ABSTRACT
The wearable devices are small and easy to carry but typically with
poor interaction experience. For example, Apple iWatch does not
support instant text message input feature because of the lack of
keyboard availability on the tiny touch screen. To address this prob-
lem, we develop a novel system, termed iKey, which enables users to
use the back of one of their hands as virtual keyboard for wearable
wristbands. iKey recognizes keystrokes based on a location-based
training model via body vibration. We will demonstrate a real time
functional prototype of iKey in this demo.
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1 INTRODUCTION
In the past few years, we have seen the take-off of wearable wrist-
bands such as Fitbit and Apple iWatch for fitness applications. The
size of smart wristbands becomes smaller and lighter to provide
better user experience. As a result, the touch screens on the wrist-
bands also becomes smaller, which make user device interaction
difficult. For example, Apple iWatches don’t support instant text
message input feature because the lack of keyboards in the tiny
touchscreens.

Currently, to overcome the limitations of a small screen, speech
recognition is one of the methods but sensitive to noise levels in
the environments. Moreover, it is insecure for sensitive informa-
tion such as password input because speech input is easy to be
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Figure 1: A sample example of iKey.

eavesdropped. For the same reason, it is also intrusive to the peo-
ple surrounding the user. Recent work, FingerIO [3] and LLAP [5]
achieve the mm level accuracy for fingertip tracing, which enables
users to write letters on ubiquitous surface instead of tiny touch-
screens. However, writing letters is significantly slower than typing
them, which results in poor user experience.

In this demo, we present a novel system, termed iKey (in Figure
1), which enables a user to type on the back of one of her hands
(her opisthenar) instead of a tiny touchscreen of a smart wristband.
The idea is to utilize vibration mechanism as tapping in different
locations on the opisthenar carries energy at different frequencies
and over different distances to a vibration sensor on a fixed location
of a wrist. The advantage of iKey is that vibration is resistant to
sound noise. And the size of the opisthenar of a user is larger than
tiny touchscreens which enables the user to type more quickly
and conveniently. Specifically, we design a keystroke identification
scheme that leverages location-based vibration information derived
from a small piezoelectric ceramic vibration sensor which can be
embedded to a smart wristband. Although keystroke identification
via body vibration has been studied in Skinput [1], in which signal is
collected from 10 sensors of an armband with a very high sampling
rate (e.g., 55 kHz), iKey uses a small form factor sensor (see Fig. 2)
only that makes it easier and more cost effective to be embedded
on smart wristbands, and samples at an order-of-magnitude lower
rates (e.g., 600 Hz) that makes it more efficient to run on resource
limited smart wristbands. On the other hand, sampling at lower
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rate produces significantly less vibration information, we need
to investigate novel methods and signal features for keystroke
identification via body vibration.

To cope with these challenges, we first consider Mel-freque-
ncy cepstral coefficients (MFCC) as the features to describe the
fine-grained location-based vibration information. Second, we use
random subspace [2] concept to increase the diversity of limited
training samples. Third, we use class-center classification and en-
semble learning concept with majority voting to classify keystrokes.
As a result, iKey achieve high keystroke recognition accuracy with
one vibration sensor and significantly lower sampling rate.

2 IKEY ARCHITECTURE
2.1 Sensing
Piezoelectric ceramic sensor uses the piezoelectric effect, tomeasure
the vibration intensity, by converting it to an electrical charge. In a
piezoelectric ceramic device, mechanical stress, instead of externally
applied voltage, causes the charge separation in the individual
atoms of a material. Thus, the vibration caused by finger taps is
able to be converted to an electrical charge. Figure 2 shows a sample
piezoelectric ceramic sensor whose external diameter is 20mm and
thickness is only 0.35 mm. The small form factor of the sensor
makes it easy to be embedded to a smart wristband as a chassis.

2.2 Data processing
We use dual-threshold endpoint detection algorithm [4] to segment
keystrokes signal. Then, we use a 20 Hz Butterworth high pass
filter to remove the DC component and low frequency noise. Also,
it can remove the noise caused by human mobility at low frequency
(less than 5 Hz). The vibration signal tapped on the opisthenar is
realized in low frequencies (less than 200 Hz) domain. Thus, we
set the cutoff frequency to 300 Hz of a Butterworth low pass filter.
Furthermore, we use the MFCC as the features and set the number
of channels in the Mel-Scale Filter Bank to 25 and use the first 40
MFCCs computed in a 35 ms windows with 5 ms window overlap.

2.3 Classification
We first adopt class-center classification concept, which is as fol-
lows. We calculate the center of each class in the training set. For
each test sample, its distance is calculated from the center of each
class. The nearest class will be the identification result. Due to
the limited vibration information collected from a single sensor
with low sampling rate, the accuracy is low with the class-center
classification method. Then, we adopt random subspace method
to increase the diversity of training samples. We sample randomly
from the training set then get several sub-training-set in subspaces.
For each subspace, with the class-center classification method, we
obtain each sub-result. Finally, we use majority voting mechanism
to process these sub-results and get the final identification result.

3 EVALUATION
We have implemented our system using a vibration sensor con-
nected to a Raspberry Pi via an Analog to Digital Converter (ADC).
We recruited 30 participants to tap on a marked TenKey layout
mounted on one of their opisthenar 30 times for each key. Thus,
we have 9000 (10 × 30 × 30) samples. We validate the resultant
classification outcome via 10-fold cross validation technique. Fig-
ure 3 shows the average classification accuracy of each participant.

Figure 2: A sample prototype of iKey.

Figure 3: Classification accuracy comparison between iKey
and Skinput.

The average accuracy of Skinput is 53% while that of iKey is 92.4%,
which represents 1.74 times improvement.

4 DEMONSTRATION
We will encourage SenSys17 attendees to use our system. Partic-
ipants will be asked to wear iKey to train the system. Then, par-
ticipants will be guided to tap on the opisthenar to input numbers
which simulates making a call on a smart wristband. At the time
of demonstration, the input from users via iKey will be displayed
on a 10.1-inch touchscreen connected to Raspberry Pi in realtime.
We require one power point to power the 10.1-inch touchscreen.
The normal Internet connection is satisfied for the system. We will
require approximately half hour for our system setup.
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